Record Information
Version2.0
Creation Date2009-06-22 16:08:29 UTC
Update Date2014-12-24 20:24:31 UTC
Accession NumberT3D1717
Identification
Common NameSilver bromate
ClassSmall Molecule
DescriptionSilver bromate is a chemical compound of silver and bromine. It is used as an oxidant for the transformation of tetrahydropyranyl ethers to carbonyl compounds. Bromine is a halogen element with the symbol Br and atomic number 35. Diatomic bromine does not occur naturally, but bromine salts can be found in crustal rock. Silver is a metallic element with the chemical symbol Ag and atomic number 47. It occurs naturally in its pure, free form, as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. (13, 14, 8, 11)
Compound Type
  • Bromate Compound
  • Industrial/Workplace Toxin
  • Inorganic Compound
  • Silver Compound
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
AgBrO3
Sillver(1+) bromate
Chemical FormulaAgBrO3
Average Molecular Mass235.770 g/mol
Monoisotopic Mass233.808 g/mol
CAS Registry Number7783-89-3
IUPAC Nameargentio bromate
Traditional Nameargentio bromate
SMILES[Ag]O[Br](=O)=O
InChI IdentifierInChI=1S/Ag.BrHO3/c;2-1(3)4/h;(H,2,3,4)/q+1;/p-1
InChI KeyInChIKey=XQLMNMQWVCXIKR-UHFFFAOYSA-M
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as transition metal bromates. These are inorganic compounds in which the largest oxoanion is bromate, and in which the heaviest atom not in an oxoanion is a transition metal.
KingdomInorganic compounds
Super ClassMixed metal/non-metal compounds
ClassTransition metal oxoanionic compounds
Sub ClassTransition metal bromates
Direct ParentTransition metal bromates
Alternative Parents
Substituents
  • Transition metal bromate
  • Inorganic silver salt
  • Inorganic oxide
  • Inorganic salt
Molecular FrameworkNot Available
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
logP0.38ChemAxon
pKa (Strongest Basic)-8.8ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area43.37 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity12.97 m³·mol⁻¹ChemAxon
Polarizability7.69 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Toxicity Profile
Route of ExposureOral (9) ; inhalation (9) ; dermal (9)
Mechanism of ToxicityBromine is a powerful oxidizing agent and is able to release oxygen free radicals from the water in mucous membranes. These free radicals are also potent oxidizers and produce tissue damage. In additon, the formation of hydrobromic and bromic acids will result in secondary irritation. The bromide ion is also known to affect the central nervous system, causing bromism. This is believed to be a result of bromide ions substituting for chloride ions in the in actions of neurotransmitters and transport systems, thus affecting numerous synaptic processes. Metallic silver is oxidized and may deposit in the tissues, causing arygria. The silver ion is known to inhibit glutathione peroxidase and NA+,K+-ATPase activity, disrupting selenium-catalyzed sulfhydryl oxidation-reduction reactions and intracellular ion concentrations, respectively. Silver nanoparticles are believed to disrupt the mitochondrial respiratory chain, causing oxidative stress, reduced ATP synthesis, and DNA damage. (13, 1, 2, 3, 4, 9, 10, 5)
MetabolismBromine is mainly absorbed via inhalation, but may also enter the body through dermal contact. Bromine salts can be ingested. Due to its reactivity, bromine quickly forms bromide and may be deposited in the tissues, displacing other halogens. Silver compounds can also be absorbed orally and dermally. It distributes throughout the body in the blood, particularily to the liver. Insoluble silver salts are transformed into soluble silver sulfide albuminates, bind to amino or carboxyl groups in RNA, DNA, and proteins, or are reduced to metallic silver by ascorbic acid or catecholamines. Metallic silver is oxidized and may deposit in the tissues, causing arygria. Silver is eliminated primarily in the faeces. (13, 9)
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)Potassium bromate: 2B, possibly carcinogenic to humans. (7)
Uses/SourcesSilver bromate is used as an oxidant for the transformation of tetrahydropyranyl ethers to carbonyl compounds. (11)
Minimum Risk LevelNot Available
Health EffectsBromine vapour causes irritation and direct damage to the mucous membranes. Elemental bromine also burns the skin. The bromide ion is a central nervous system depressant and chronic exposure produces neuronal effects. This is called bromism and can result in central reactions reaching from somnolence to coma, cachexia, exicosis, loss of reflexes or pathologic reflexes, clonic seizures, tremor, ataxia, loss of neural sensitivity, paresis, papillar edema of the eyes, abnormal speech, cerebral edema, delirium, aggressiveness, and psychoses. Bromate is also a potential carcinogen. Exposure to high levels of silver for a long period of time may result in a condition called arygria, a blue-gray discoloration of the skin and other body tissues. Argyria is a permanent effect but does not appear to be harmful to health. While silver itself is not toxic, most silver salts are, and may damage the liver, kidney, and central nervous system, as well as be carcinogenic. (13, 14, 15, 8, 9, 10, 12)
SymptomsBromine vapour causes irritation and direct damage to the mucous membranes. Symptoms include lacrimation, rhinorrhoea, eye irritation with mucous secretions from the oropharyngeal and upper airways, coughing, dyspnoea, choking, wheezing, epistaxis, and headache. The bromide ion is a central nervous system depressant producing ataxia, slurred speech, tremor, nausea, vomiting, lethargy, dizziness, visual disturbances, unsteadiness, headaches, impaired memory and concentration, disorientation and hallucinations. This is called bromism. Exposure to high levels of silver for a long period of time may result in a condition called arygria, a blue-gray discoloration of the skin and other body tissues. Argyria is a permanent effect but does not appear to be harmful to health. Exposure to high levels of silver in the air has resulted in breathing problems, lung and throat irritation, and stomach pains. Skin contact with silver can cause mild allergic reactions such as rash, swelling, and inflammation in some people. (13, 9, 10)
TreatmentEYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID9878022
ChEMBL IDNot Available
ChemSpider ID8053699
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDNot Available
Stitch IDSilver bromate
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D1717.pdf
General References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
  2. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009 Feb 24;3(2):279-90. doi: 10.1021/nn800596w. [19236062 ]
  3. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY: Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro. 2009 Sep;23(6):1076-84. doi: 10.1016/j.tiv.2009.06.001. Epub 2009 Jun 7. [19508889 ]
  4. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
  5. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J: Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med. 2007 Jun;13(6):695-702. Epub 2007 May 27. [17529981 ]
  6. Golomb, BA (1999). A Review of the Scientific Literature As It Pertains to Gulf War Illnesses. Volume 2: Pyridostigmine Bromide. Washington, DC: RAND.
  7. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
  8. Wikipedia. Bromine. Last Updated 9 June 2009. [Link]
  9. International Programme on Chemical Safety (IPCS) INCHEM (1992). Poison Information Monograph for Bromine. [Link]
  10. Wikipedia. Potassium bromide. Last Updated 9 June 2009. [Link]
  11. Wikipedia. Silver bromate. Last Updated 21 April 2009. [Link]
  12. Wikipedia. Bromate. Last Updated 26 May 2009. [Link]
  13. ATSDR - Agency for Toxic Substances and Disease Registry (1990). Toxicological profile for silver. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  14. Wikipedia. Silver. Last updated Dec 2014. [Link]
  15. International Programme on Chemical Safety (IPCS) INCHEM (1977). WHO Food Additive Series No. 12: Silver. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport.
Gene Name:
CLCN1
Uniprot ID:
P35523
Molecular Weight:
108625.435 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms.
Gene Name:
CLCNKA
Uniprot ID:
P51800
Molecular Weight:
75284.08 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms.
Gene Name:
CLCNKB
Uniprot ID:
P51801
Molecular Weight:
75445.3 Da
References
  1. Simchowitz L: Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils. J Gen Physiol. 1988 Jun;91(6):835-60. [3047312 ]
  2. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Glutathione peroxidase activity
Specific Function:
Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione. May constitute a glutathione peroxidase-like protective system against peroxide damage in sperm membrane lipids.
Gene Name:
GPX5
Uniprot ID:
O75715
Molecular Weight:
25202.14 Da
References
  1. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Sh3 domain binding
Specific Function:
Protects the hemoglobin in erythrocytes from oxidative breakdown.
Gene Name:
GPX1
Uniprot ID:
P07203
Molecular Weight:
22087.94 Da
References
  1. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
General Function:
Glutathione peroxidase activity
Specific Function:
Could play a major role in protecting mammals from the toxicity of ingested organic hydroperoxides. Tert-butyl hydroperoxide, cumene hydroperoxide and linoleic acid hydroperoxide but not phosphatidycholine hydroperoxide, can act as acceptors.
Gene Name:
GPX2
Uniprot ID:
P18283
Molecular Weight:
21953.835 Da
References
  1. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
General Function:
Transcription factor binding
Specific Function:
Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione.
Gene Name:
GPX3
Uniprot ID:
P22352
Molecular Weight:
25552.185 Da
References
  1. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
General Function:
Glutathione peroxidase activity
Specific Function:
Not Available
Gene Name:
GPX6
Uniprot ID:
P59796
Molecular Weight:
24970.46 Da
References
  1. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
General Function:
Peroxidase activity
Specific Function:
It protects esophageal epithelia from hydrogen peroxide-induced oxidative stress. It suppresses acidic bile acid-induced reactive oxigen species (ROS) and protects against oxidative DNA damage and double-strand breaks.
Gene Name:
GPX7
Uniprot ID:
Q96SL4
Molecular Weight:
20995.88 Da
References
  1. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
General Function:
Phospholipid-hydroperoxide glutathione peroxidase activity
Specific Function:
Protects cells against membrane lipid peroxidation and cell death. Required for normal sperm development and male fertility. Could play a major role in protecting mammals from the toxicity of ingested lipid hydroperoxides. Essential for embryonic development. Protects from radiation and oxidative damage.
Gene Name:
GPX4
Uniprot ID:
P36969
Molecular Weight:
22174.52 Da
References
  1. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
General Function:
Peroxidase activity
Specific Function:
Not Available
Gene Name:
GPX8
Uniprot ID:
Q8TED1
Molecular Weight:
23880.83 Da
References
  1. Dillard CJ, Tappel AL: Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation. J Inorg Biochem. 1986 Sep;28(1):13-20. [3760861 ]
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A1
Uniprot ID:
P05023
Molecular Weight:
112895.01 Da
References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A2
Uniprot ID:
P50993
Molecular Weight:
112264.385 Da
References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A3
Uniprot ID:
P13637
Molecular Weight:
111747.51 Da
References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility.
Gene Name:
ATP1A4
Uniprot ID:
Q13733
Molecular Weight:
114165.44 Da
References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane.Involved in cell adhesion and establishing epithelial cell polarity.
Gene Name:
ATP1B1
Uniprot ID:
P05026
Molecular Weight:
35061.07 Da
References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known.Mediates cell adhesion of neurons and astrocytes, and promotes neurite outgrowth.
Gene Name:
ATP1B2
Uniprot ID:
P14415
Molecular Weight:
33366.925 Da
References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known.
Gene Name:
ATP1B3
Uniprot ID:
P54709
Molecular Weight:
31512.34 Da
References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
General Function:
Transporter activity
Specific Function:
May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase.
Gene Name:
FXYD2
Uniprot ID:
P54710
Molecular Weight:
7283.265 Da
References
  1. Bianchini A, Playle RC, Wood CM, Walsh PJ: Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol. 2005 Mar 25;72(1-2):67-82. Epub 2004 Dec 29. [15748748 ]
23. DNA
General Function:
Used for biological information storage.
Specific Function:
DNA contains the instructions needed for an organism to develop, survive and reproduce.
Molecular Weight:
2.15 x 1012 Da