Record Information
Version2.0
Creation Date2009-03-22 21:55:08 UTC
Update Date2014-12-24 20:22:33 UTC
Accession NumberT3D0682
Identification
Common NameTris(ethylenediamine)cobalt(III) chloride
ClassSmall Molecule
DescriptionTris(ethylenediamine)cobalt(III) chloride is a coordination complex of cobalt. Cobalt is a metallic element with the atomic number 27. It is found naturally in rocks, soil, water, plants, and animals. In small amounts cobalt is an essential element for life, as it is part of vitamin B12. However, excess exposure is known to exhibit toxic effects. (2, 3)
Compound Type
  • Amine
  • Cobalt Compound
  • Industrial/Workplace Toxin
  • Organic Compound
  • Organometallic
  • Pollutant
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
Tris(ethylenediamine)cobalt trichloride
Tris(ethylenediamine)cobalt(3+) chloride
Tris(ethylenediamine)cobalt(3+) Trichloride
Chemical FormulaC6H24Cl3CoN6
Average Molecular Mass345.587 g/mol
Monoisotopic Mass344.046 g/mol
CAS Registry Number207802-43-5
IUPAC Namecobalt(3+) ion tris(ethane-1,2-diamine) trichloride
Traditional Namecobalt(3+) ion tris(ethylenediamine) trichloride
SMILES[Cl-].[Cl-].[Cl-].[Co+3].NCCN.NCCN.NCCN
InChI IdentifierInChI=1S/3C2H8N2.3ClH.Co/c3*3-1-2-4;;;;/h3*1-4H2;3*1H;/q;;;;;;+3/p-3
InChI KeyInChIKey=NFUAZJFARNNNFB-UHFFFAOYSA-K
Chemical Taxonomy
Description belongs to the class of organic compounds known as organic metal halides. These are organic compounds containing metals and halogens. Some are ionic while others are covalently bonded.
KingdomOrganic compounds
Super ClassOrganic salts
ClassOrganic metal salts
Sub ClassOrganic metal halides
Direct ParentOrganic metal halides
Alternative Parents
Substituents
  • Organic metal halide
  • Organic transition metal salt
  • Organic nitrogen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Organic cobalt salt
  • Organic chloride salt
  • Primary amine
  • Organonitrogen compound
  • Primary aliphatic amine
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkNot Available
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceYellow or orange crystals.
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility560 g/LALOGPS
logP-1.8ALOGPS
logP-1.4ChemAxon
logS0.97ALOGPS
pKa (Strongest Basic)9.69ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area52.04 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity17.87 m³·mol⁻¹ChemAxon
Polarizability7.08 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
SpectraNot Available
Toxicity Profile
Route of ExposureInhalation (2) ; oral (2) ; dermal (2)
Mechanism of ToxicityCobalt is believed to exhibit its toxicity through a oxidant-based and free radical-based processes. It produces oxygen radicals and may be oxidized to ionic cobalt, causing increased lipid peroxidation, DNA damage, and inducing certain enzymes that lead to cell apoptosis. Cobalt has also been shown to block inorganic calcium channels, possibly impairing neurotransmission. Cobalt can also chelate lipoic acids, impairing oxidation of pyruvate or fatty acids. In addition, cobalt may inhibit DNA repair by interacting with zinc finger DNA repair proteins, and has also been shown to inhibit heme synthesis and glucose metabolism. Cobalt may activate specific helper T-lymphocyte cells and interact directly with immunologic proteins, such as antibodies (IgA and IgE) or Fc receptors, resulting in immunosensitization. (2)
MetabolismCobalt is absorbed though the lungs, gastrointestinal tract, and skin. Since it is a component of the vitamin B12 (cyanocobalamin), it is distributed to most tissues of the body. It is transported in the blood, often bound to albumin, with the highest levels being found in the liver and kidney. Cobalt is excreted mainly in the urine and faeces. (2)
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)2B, possibly carcinogenic to humans. (5)
Uses/SourcesNot Available
Minimum Risk LevelChronic Inhalation: 0.0001 mg/m3 (4) Intermediate Oral: 0.01 mg/kg/day (4)
Health EffectsExposure to high amount of cobalt can cause heart, lung, kidney, and liver damage. Skin contact is known to result in contact dermatitis. Cobalt may also have mutagenic and carcinogenic effects. (2, 3)
SymptomsCobalt inhalation can cause asthma-like breathing problems. Skin contact is known to result in contact dermatitis, which is characterized by irritation and rashes. Ingesting large amounts of cobalt may cause nausea and vomiting. (6)
TreatmentTreatment of cobalt poisoning is symptomatic. (2)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID499980
ChEMBL IDNot Available
ChemSpider ID147079
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDNot Available
Stitch IDTris(ethylenediamine)cobalt(III) chloride
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D0682.pdf
General References
  1. Amirtharaj GJ, Natarajan SK, Mukhopadhya A, Zachariah UG, Hegde SK, Kurian G, Balasubramanian KA, Ramachandran A: Fatty acids influence binding of cobalt to serum albumin in patients with fatty liver. Biochim Biophys Acta. 2008 May;1782(5):349-54. doi: 10.1016/j.bbadis.2008.02.006. Epub 2008 Feb 29. [18346470 ]
  2. ATSDR - Agency for Toxic Substances and Disease Registry (2004). Toxicological profile for cobalt. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  3. Wikipedia. Cobalt. Last Updated 21 March 2009. [Link]
  4. ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  5. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
  6. U.S. National Library of Medicine, MedlinePlus: Cobalt poisoning. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. Can hydrates cyanamide to urea.
Gene Name:
CA1
Uniprot ID:
P00915
Molecular Weight:
28870.0 Da
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
  2. Ul-Hassan M, Scozzafava A, Chohan ZH, Supuran CT: Carbonic anhydrase inhibitors: metal complexes of a sulfanilamide derived Schiff base and their interaction with isozymes I, II and IV. J Enzyme Inhib. 2001 Dec;16(6):499-505. [12164389 ]
General Function:
Zinc ion binding
Specific Function:
Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. Stimulates the chloride-bicarbonate exchange activity of SLC26A6.
Gene Name:
CA2
Uniprot ID:
P00918
Molecular Weight:
29245.895 Da
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
  2. Ul-Hassan M, Scozzafava A, Chohan ZH, Supuran CT: Carbonic anhydrase inhibitors: metal complexes of a sulfanilamide derived Schiff base and their interaction with isozymes I, II and IV. J Enzyme Inhib. 2001 Dec;16(6):499-505. [12164389 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. May stimulate the sodium/bicarbonate transporter activity of SLC4A4 that acts in pH homeostasis. It is essential for acid overload removal from the retina and retina epithelium, and acid release in the choriocapillaris in the choroid.
Gene Name:
CA4
Uniprot ID:
P22748
Molecular Weight:
35032.075 Da
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
  2. Ul-Hassan M, Scozzafava A, Chohan ZH, Supuran CT: Carbonic anhydrase inhibitors: metal complexes of a sulfanilamide derived Schiff base and their interaction with isozymes I, II and IV. J Enzyme Inhib. 2001 Dec;16(6):499-505. [12164389 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Not Available
Gene Name:
ALAS2
Uniprot ID:
P22557
Molecular Weight:
64632.86 Da
References
  1. Wikipedia. Mercury poisoning. Last Updated 8 March 2009. [Link]
General Function:
Pyridoxal phosphate binding
Specific Function:
Not Available
Gene Name:
ALAS1
Uniprot ID:
P13196
Molecular Weight:
70580.325 Da
References
  1. Wikipedia. Mercury poisoning. Last Updated 8 March 2009. [Link]
6. DNA
General Function:
Used for biological information storage.
Specific Function:
DNA contains the instructions needed for an organism to develop, survive and reproduce.
Molecular Weight:
2.15 x 1012 Da
References
  1. ATSDR - Agency for Toxic Substances and Disease Registry (2004). Toxicological profile for cobalt. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Protein homodimerization activity
Specific Function:
Involved in DNA excision repair. Initiates repair by binding to damaged sites with various affinities, depending on the photoproduct and the transcriptional state of the region. Required for UV-induced CHEK1 phosphorylation and the recruitment of CEP164 to cyclobutane pyrimidine dimmers (CPD), sites of DNA damage after UV irradiation.
Gene Name:
XPA
Uniprot ID:
P23025
Molecular Weight:
31367.71 Da
References
  1. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A: Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect. 2002 Oct;110 Suppl 5:797-9. [12426134 ]
General Function:
Antigen binding
Specific Function:
Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.
Gene Name:
IGHA1
Uniprot ID:
P01876
Molecular Weight:
37654.29 Da
References
  1. Bencko V, Wagner V, Wagnerova M, Reichrtova E: Immuno-biochemical findings in groups of individuals occupationally and non-occupationally exposed to emissions containing nickel and cobalt. J Hyg Epidemiol Microbiol Immunol. 1983;27(4):387-94. [6663071 ]
General Function:
Antigen binding
Specific Function:
Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.
Gene Name:
IGHA2
Uniprot ID:
P01877
Molecular Weight:
36526.005 Da
References
  1. Bencko V, Wagner V, Wagnerova M, Reichrtova E: Immuno-biochemical findings in groups of individuals occupationally and non-occupationally exposed to emissions containing nickel and cobalt. J Hyg Epidemiol Microbiol Immunol. 1983;27(4):387-94. [6663071 ]
General Function:
Immunoglobulin receptor binding
Specific Function:
Not Available
Gene Name:
IGHE
Uniprot ID:
P01854
Molecular Weight:
47018.665 Da
References
  1. Shirakawa T, Kusaka Y, Fujimura N, Goto S, Morimoto K: The existence of specific antibodies to cobalt in hard metal asthma. Clin Allergy. 1988 Sep;18(5):451-60. [3233723 ]
General Function:
Zinc ion binding
Specific Function:
Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates the poly(ADP-ribosyl)ation of APLF and CHFR. Positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150. With EEF1A1 and TXK, forms a complex that acts as a T-helper 1 (Th1) cell-specific transcription factor and binds the promoter of IFN-gamma to directly regulate its transcription, and is thus involved importantly in Th1 cytokine production. Required for PARP9 and DTX3L recruitment to DNA damage sites. PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites.
Gene Name:
PARP1
Uniprot ID:
P09874
Molecular Weight:
113082.945 Da
References
  1. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A: Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect. 2002 Oct;110 Suppl 5:797-9. [12426134 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1C subunit play an important role in excitation-contraction coupling in the heart. The various isoforms display marked differences in the sensitivity to DHP compounds. Binding of calmodulin or CABP1 at the same regulatory sites results in an opposit effects on the channel function.
Gene Name:
CACNA1C
Uniprot ID:
Q13936
Molecular Weight:
248974.1 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity involved sa node cell action potential
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA).
Gene Name:
CACNA1D
Uniprot ID:
Q01668
Molecular Weight:
245138.75 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1F gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA).
Gene Name:
CACNA1F
Uniprot ID:
O60840
Molecular Weight:
220675.9 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1S gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle.
Gene Name:
CACNA1S
Uniprot ID:
Q13698
Molecular Weight:
212348.1 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB1
Uniprot ID:
Q02641
Molecular Weight:
65712.995 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB2
Uniprot ID:
Q08289
Molecular Weight:
73579.925 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB3
Uniprot ID:
P54284
Molecular Weight:
54531.425 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB4
Uniprot ID:
O00305
Molecular Weight:
58168.625 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1B gives rise to N-type calcium currents. N-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by omega-conotoxin-GVIA (omega-CTx-GVIA) and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to dihydropyridines (DHP), and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing alpha-1B subunit may play a role in directed migration of immature neurons.
Gene Name:
CACNA1B
Uniprot ID:
Q00975
Molecular Weight:
262493.84 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1A gives rise to P and/or Q-type calcium currents. P/Q-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by the funnel toxin (Ftx) and by the omega-agatoxin-IVA (omega-Aga-IVA). They are however insensitive to dihydropyridines (DHP), and omega-conotoxin-GVIA (omega-CTx-GVIA).
Gene Name:
CACNA1A
Uniprot ID:
O00555
Molecular Weight:
282362.39 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1E gives rise to R-type calcium currents. R-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by nickel, and partially by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to dihydropyridines (DHP), omega-conotoxin-GVIA (omega-CTx-GVIA), and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing alpha-1E subunit could be involved in the modulation of firing patterns of neurons which is important for information processing.
Gene Name:
CACNA1E
Uniprot ID:
Q15878
Molecular Weight:
261729.05 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
This protein is a subunit of the dihydropyridine (DHP) sensitive calcium channel. Plays a role in excitation-contraction coupling. The skeletal muscle DHP-sensitive Ca(2+) channel may function only as a multiple subunit complex.
Gene Name:
CACNG1
Uniprot ID:
Q06432
Molecular Weight:
25028.105 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG2
Uniprot ID:
Q9Y698
Molecular Weight:
35965.44 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state (By similarity).
Gene Name:
CACNG3
Uniprot ID:
O60359
Molecular Weight:
35548.14 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG4
Uniprot ID:
Q9UBN1
Molecular Weight:
36578.39 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the gating properties of AMPA-selective glutamate receptors (AMPARs). Modulates their gating properties by accelerating their rates of activation, deactivation and desensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity for GRIA1, GRIA4 and the long isoform of GRIA2. Thought to stabilize the calcium channel in an inactivated (closed) state (By similarity).
Gene Name:
CACNG5
Uniprot ID:
Q9UF02
Molecular Weight:
30902.44 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG6
Uniprot ID:
Q9BXT2
Molecular Weight:
28128.745 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity only for GRIA1 and GRIA2. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG7
Uniprot ID:
P62955
Molecular Weight:
31002.29 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG8
Uniprot ID:
Q8WXS5
Molecular Weight:
43312.44 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated ion channel activity
Specific Function:
Thought to stabilize the calcium channel in an inactivated (closed) state. Modulates calcium current when coexpressed with CACNA1G (By similarity).
Gene Name:
TMEM37
Uniprot ID:
Q8WXS4
Molecular Weight:
20931.565 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation-contraction coupling (By similarity).
Gene Name:
CACNA2D1
Uniprot ID:
P54289
Molecular Weight:
124566.93 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q-type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) and possibly T-type (CACNA1G). Overexpression induces apoptosis.
Gene Name:
CACNA2D2
Uniprot ID:
Q9NY47
Molecular Weight:
129816.095 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated ion channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q-type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) but not T-type (CACNA1G) (By similarity).
Gene Name:
CACNA2D3
Uniprot ID:
Q8IZS8
Molecular Weight:
123010.22 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel.
Gene Name:
CACNA2D4
Uniprot ID:
Q7Z3S7
Molecular Weight:
127936.93 Da
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]