Record Information
Version2.0
Creation Date2009-06-23 18:10:09 UTC
Update Date2014-12-24 20:24:45 UTC
Accession NumberT3D1850
Identification
Common NamePermethrin
ClassSmall Molecule
DescriptionPermethrin is only found in individuals that have used or taken this drug. It is a pyrethroid insecticide commonly used in the treatment of lice infestations and scabies. It is a yellow to light orange-brown, low melt-ing solid or viscous liquid.Permethrin acts on the nerve cell membrane to disrupt the sodium channel current by which the polarization of the membrane is regulated. Delayed repolarization and paralysis of the pests are the consequences of this disturbance.
Compound Type
  • Drug
  • Ester
  • Ether
  • Household Toxin
  • Metabolite
  • Organic Compound
  • Organochloride
  • Pesticide
  • Pyrethroid
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
(3-Phenoxyphenyl)methyl (+-)-cis,trans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate
3-(2,2-Dichloroethenyl)-2,2-dimethylcyclopropane carboxylic acid, (3-phenoxyphenyl) methyl ester
Acticin
Elimite
Lyclear
Nix
Chemical FormulaC21H20Cl2O3
Average Molecular Mass391.288 g/mol
Monoisotopic Mass390.079 g/mol
CAS Registry Number52645-53-1
IUPAC Name(3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate
Traditional Namepermethrin
SMILESCC1(C)C(C=C(Cl)Cl)C1C(=O)OCC1=CC(OC2=CC=CC=C2)=CC=C1
InChI IdentifierInChI=1/C21H20Cl2O3/c1-21(2)17(12-18(22)23)19(21)20(24)25-13-14-7-6-10-16(11-14)26-15-8-4-3-5-9-15/h3-12,17,19H,13H2,1-2H3
InChI KeyInChIKey=RLLPVAHGXHCWKJ-UHFFFAOYNA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as pyrethroids. These are organic compounds similar to the pyrethrins. Some pyrethroids containing a chrysanthemic acid esterified with a cyclopentenone (pyrethrins), or with a phenoxybenzyl group.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentPyrethroids
Alternative Parents
Substituents
  • Pyrethroid skeleton
  • Diphenylether
  • Diaryl ether
  • Benzyloxycarbonyl
  • Phenoxy compound
  • Phenol ether
  • Monocyclic benzene moiety
  • Cyclopropanecarboxylic acid or derivatives
  • Benzenoid
  • Carboxylic acid ester
  • Ketene acetal or derivatives
  • Carboxylic acid derivative
  • Chloroalkene
  • Haloalkene
  • Ether
  • Vinyl halide
  • Monocarboxylic acid or derivatives
  • Vinyl chloride
  • Organic oxide
  • Carbonyl group
  • Hydrocarbon derivative
  • Organohalogen compound
  • Organochloride
  • Organooxygen compound
  • Organic oxygen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Extracellular
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
Applications
Biological Roles
Chemical RolesNot Available
Physical Properties
StateSolid
Appearance Colourless crystals (14).
Experimental Properties
PropertyValue
Melting Point34°C
Boiling Point220°C at 5.00E-02 mm Hg
Solubility0.006 mg/L (at 20°C)
LogP6.5
Predicted Properties
PropertyValueSource
Water Solubility6.9e-05 g/LALOGPS
logP6.24ALOGPS
logP5.7ChemAxon
logS-6.8ALOGPS
pKa (Strongest Basic)-3.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area35.53 ŲChemAxon
Rotatable Bond Count7ChemAxon
Refractivity114.28 m³·mol⁻¹ChemAxon
Polarizability39.43 ųChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-001i-3900000000-469dc103f8f391a6bb7f2017-09-01View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0002-1900000000-956860faa94e3dea2ee22017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0002-1900000000-ce2901f0a3049806d95f2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0002-1900000000-b5846ca870454df7f44f2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0002-0900000000-474995c2ccb155f0975c2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-0002-1900000000-261c3708f1e50c4a84182017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QFT , positivesplash10-006t-2900000000-4915b2e2cee108c117a22017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 60V, Positivesplash10-0002-0900000000-a73154cdccdc124955c02021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 75V, Positivesplash10-0002-1900000000-2f9800db80661116530a2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 45V, Positivesplash10-0002-1900000000-bf65bfc29edf7e8f72d62021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-0002-1900000000-91cb4c87ae286d88f2032021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 15V, Positivesplash10-0002-1900000000-2546d86434c241ad989e2021-09-20View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-0519000000-0f6eb9a687fe3c0d66c42016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0006-1923000000-a400c6833ac566d7a6222016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-052e-2900000000-7758be41aece58f5d5d12016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-000i-0109000000-fdac422c546f05b83ceb2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-000i-1709000000-f755eb7d0bee859d0bb82016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9500000000-97e9860533a91746241d2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0536-0429000000-98939aa3532b9312d6ac2021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-001i-2923000000-0cd57653df5af5d7ac422021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-001l-8911000000-9f85adb3775c89af21a52021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-000i-0119000000-eda907ff628cd2b358442021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03ki-1902000000-84bc834f9310543ce7d72021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9211000000-bcaffb823cfb3efededa2021-10-11View Spectrum
Toxicity Profile
Route of ExposureInhalation (13) ; oral (13) ; dermal (13) ; eye contact (13). Poorly absorbed through the skin.
Mechanism of ToxicityPyrethroids exert their effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. They appear to bind to the membrane lipid phase in the immediate vicinity of the sodium channel, thus modifying the channel kinetics. This blocks the closing of the sodium gates in the nerves, and thus prolongs the return of the membrane potential to its resting state. The repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential produces effects quite similar to those produced by DDT, leading to hyperactivity of the nervous system which can result in paralysis and/or death. Other mechanisms of action of pyrethroids include antagonism of gamma-aminobutyric acid (GABA)-mediated inhibition, modulation of nicotinic cholinergic transmission, enhancement of noradrenaline release, and actions on calcium ions. (7, 13)
MetabolismThe proposed metabolic pathway for cis- and trans-permethrin are as follows. The five principle sites of metabolic attack in both permethrin isomers is ester cleavage, oxidation at the trans- and cis-methyl of the geminal dimethyl group of the acid moiety, and oxidation at 2'- and 4'- position of the phenoxy group. Conjugation of the resultant carboxylic acids, alcohols, and phenols with glucuronic acid, glycine, and sulfuric acid occurs to varying extent. cis-Permethrin is more stable then trans-permethrin, and the cis isomer yields four faecally excreted ester metabolites that results from hydroxylation at the 2'- or 4'-position of the phenoxy group or at the trans- or cis methyl group on the cyclopropane ring. The estercleaved metabolites are extensively excreted into the urine whereas the metabolites retaining an ester bond are found only in the feces. The major metabolite from the acid moiety of both isomers was Cl2CA in free (1-8%) and glucuronide (14-42%) forms. Other significant metabolites are trans-OH-Cl2CA (1-5%) and cis-OH-Cl2CA in the free (3-5%), lactone (0-4%) and glucuronide (1-2%) forms. On the other hand, the alcohol moiety released after cleavage of the ester bond of both isomers is converted mainly to the sulfate of 3-(4'-hydroxyphenoxy)benzoic acid (4'-OH-PBacid) (29-43% of the dose) and PBacid in the free (1-10%) and glucuronide (7-15%) forms. Other significant metabolites of the alcohol moiety are PBalc, PBacid-glycine and the sulfate of 3-(2'-hydroxyphenoxy) benzoic acid (2'-OH-PBacid). A study by Nakamura et al. proposed that permethrin was hydrolyzed by CES (carboxylesterase), then PBAlc formed was oxidized to PBAld, and further, PBAld was oxidized to PBAcid by the P450 system in rat liver microsomes. (4, 1) Route of Elimination: Permethrin is rapidly metabolized by ester hydrolysis to inactive metabolites which are excreted primarily in the urine.
Toxicity ValuesOral, rat LD50: 430 - 4000 mg/kg Skin, rabbit LD50: 2000 mg/kg LD50: 3 801 mg/kg (Oral, Rat) (13)
Lethal DoseNot Available
Carcinogenicity (IARC Classification)3, not classifiable as to its carcinogenicity to humans. (10)
Uses/SourcesFor the treatment of infestation with Sarcoptes scabiei (scabies). Pyrethroids are used as insecticides. (13)
Minimum Risk LevelIntermediate Oral: 0.2 mg/kg/day (Rat) (13)
Health EffectsAs for every type I pyrethroids , permethrin effects typically include rapid onset of aggressive behavior and increased sensitivity to external stimuli, followed by fine tremor, prostration with coarse whole body tremor, elevated body temperature, coma, and death. Paresthesia, severe corneal damage, hypotension and tachycardia, associated with anaphylaxis can also occur following permethrin poisoning. (13)
SymptomsFollowing oral exposure, severe fine tremor, marked reflex hyperexcitability, sympathetic activation can occur. Nausea, vomiting and abdominal pain commonly occur and develop following ingestion. Sudden bronchospasm, swelling of oral and laryngeal mucous membranes, and anaphylactoid reactions have been reported after inhalation. Hypersensitivity reactions characterized by pneumonitis, cough, dyspnea, wheezing, chest pain, and bronchospasm may occur too . Dermatitis is the main effect of a dermal exposure to permethrin. (8)
TreatmentFollowing oral exposure, the treatment is symptomatic and supportive and includes monitoring for the development of hypersensitivity reactions with respiratory distress. Provide adequate airway management when needed. Gastric decontamination is usually not required unless the pyrethrin product is combined with a hydrocarbon. Following inhalation exposure, move patient to fresh air. monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Treat bronchospasm with inhaled beta2 agonist and oral or parenteral corticosteroids. In case of eye exposure, irrigate exposed eyes with copious amounts of room temperature water for at least 15 minutes. If irritation, pain, swelling, lacrimation, or photophobia persist, the patient should be seen in a health care facility. If the contamination occurs through dermal exposure, remove contaminated clothing and wash exposed area thoroughly with soap and water. A physician may need to examine the area if irritation or pain persists. Vitamin E topical application is highly effective in relieving parenthesis. (8)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB04930
HMDB IDHMDB15604
PubChem Compound ID40326
ChEMBL IDCHEMBL1525
ChemSpider ID36845
KEGG IDC14388
UniProt IDNot Available
OMIM ID
ChEBI ID34911
BioCyc IDNot Available
CTD IDD026023
Stitch IDPermethrin
PDB IDNot Available
ACToR ID2174
Wikipedia LinkPermethrin
References
Synthesis ReferenceNot Available
MSDSLink
General References
  1. Nakamura Y, Sugihara K, Sone T, Isobe M, Ohta S, Kitamura S: The in vitro metabolism of a pyrethroid insecticide, permethrin, and its hydrolysis products in rats. Toxicology. 2007 Jun 25;235(3):176-84. Epub 2007 Mar 19. [17451859 ]
  2. Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughes MF: In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos. 2009 Jan;37(1):221-8. doi: 10.1124/dmd.108.022343. Epub 2008 Oct 23. [18948380 ]
  3. Sahib IK, Prasada Rao KS, Desaiah D: Pyrethroid inhibition of basal and calmodulin stimulated Ca2+ ATPase and adenylate cyclase in rat brain. J Appl Toxicol. 1987 Apr;7(2):75-80. [2957417 ]
  4. Vogel JS, Bullen EC, Teygong CL, Howard EW: Identification of the RLBP1 gene promoter. Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3872-7. [17652763 ]
  5. Abbassy MA, Eldefrawi ME, Eldefrawi AT: Influence of the alcohol moiety of pyrethroids on their interactions with the nicotinic acetylcholine receptor. J Toxicol Environ Health. 1983 Oct-Dec;12(4-6):575-90. [6321746 ]
  6. Abedin S, Narang M, Gandhi V, Narang S: Efficacy of permethrin cream and oral ivermectin in treatment of scabies. Indian J Pediatr. 2007 Oct;74(10):915-6. [17978449 ]
  7. Hayes WJ Jr. and Laws ER Jr. (eds) (1991). Handbook of Pesticide Toxicology. Volume 3. Classes of Pesticides. New York, NY: Academic Press, Inc.
  8. Rumack BH (2009). POISINDEX(R) Information System. Englewood, CO: Micromedex, Inc. CCIS Volume 141, edition expires Aug, 2009.
  9. WHO (1990). Environmental Health Criteria 94: Permethrin.
  10. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
  11. Wikipedia. Tralomethrin. Last Updated 22 January 2009. [Link]
  12. Wikipedia. Pyrethroid. Last Updated 8 June 2009. [Link]
  13. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  14. Wikipedia. Permethrin. Last Updated 7 August 2009. [Link]
Gene Regulation
Up-Regulated Genes
GeneGene SymbolGene IDInteractionChromosomeDetails
Down-Regulated Genes
GeneGene SymbolGene IDInteractionChromosomeDetails

Targets

General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes.
Gene Name:
NR1I2
Uniprot ID:
O75469
Molecular Weight:
49761.245 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC507.57 uMNCGC_PXR_Agonist_humanNCGC
AC502.87 uMNVS_NR_hPXRNovascreen
References
  1. Kojima H, Sata F, Takeuchi S, Sueyoshi T, Nagai T: Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Toxicology. 2011 Feb 27;280(3):77-87. doi: 10.1016/j.tox.2010.11.008. Epub 2010 Nov 27. [21115097 ]
  2. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN1A
Uniprot ID:
P35498
Molecular Weight:
228969.49 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Tetrodotoxin-resistant channel that mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms.
Gene Name:
SCN10A
Uniprot ID:
Q9Y5Y9
Molecular Weight:
220623.605 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Also involved, with the contribution of the receptor tyrosine kinase NTRK2, in rapid BDNF-evoked neuronal depolarization.
Gene Name:
SCN11A
Uniprot ID:
Q9UI33
Molecular Weight:
204919.66 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN2A
Uniprot ID:
Q99250
Molecular Weight:
227972.64 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN3A
Uniprot ID:
Q9NY46
Molecular Weight:
226291.905 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. This sodium channel may be present in both denervated and innervated skeletal muscle.
Gene Name:
SCN4A
Uniprot ID:
P35499
Molecular Weight:
208059.175 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in sa node cell action potential
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels.
Gene Name:
SCN5A
Uniprot ID:
Q14524
Molecular Weight:
226937.475 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN7A
Uniprot ID:
Q01118
Molecular Weight:
193491.605 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. In macrophages and melanoma cells, isoform 5 may participate in the control of podosome and invadopodia formation.
Gene Name:
SCN8A
Uniprot ID:
Q9UQD0
Molecular Weight:
225278.005 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain (By similarity).
Gene Name:
SCN9A
Uniprot ID:
Q15858
Molecular Weight:
226370.175 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in purkinje myocyte action potential
Specific Function:
Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-1 can modulate multiple alpha subunit isoforms from brain, skeletal muscle, and heart. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons.Isoform 2: Cell adhesion molecule that plays a critical role in neuronal migration and pathfinding during brain development. Stimulates neurite outgrowth.
Gene Name:
SCN1B
Uniprot ID:
Q07699
Molecular Weight:
24706.955 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity).
Gene Name:
SCN2B
Uniprot ID:
O60939
Molecular Weight:
24325.69 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity).
Gene Name:
SCN3B
Uniprot ID:
Q9NY72
Molecular Weight:
24702.08 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation. Modulates the suceptibility of the sodium channel to inhibition by toxic peptides from spider, scorpion, wasp and sea anemone venom.
Gene Name:
SCN4B
Uniprot ID:
Q8IWT1
Molecular Weight:
24968.755 Da
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
  2. Klaassen CD, Amdur MO, Doull J (eds) (1995). Casarett and Doull's Toxicology. The Basic Science of Poisons. 5th ed. New York, NY: McGraw-Hill.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2003). Toxicological profile for pyrethrins and pyrethroids. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
General Function:
Signal transducer activity
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
Gene Name:
ATP2C1
Uniprot ID:
P98194
Molecular Weight:
100576.42 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
Gene Name:
ATP2C2
Uniprot ID:
O75185
Molecular Weight:
103186.475 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Protein homodimerization activity
Specific Function:
Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A1
Uniprot ID:
O14983
Molecular Weight:
110251.36 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
S100 protein binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
Gene Name:
ATP2A2
Uniprot ID:
P16615
Molecular Weight:
114755.765 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A3
Uniprot ID:
Q93084
Molecular Weight:
113976.23 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Vitamin d3 25-hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide (PubMed:11159812). Catalyzes 4-beta-hydroxylation of cholesterol. May catalyze 25-hydroxylation of cholesterol in vitro (PubMed:21576599).
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular Weight:
57342.67 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC502.15 uMCLZD_CYP3A4_24CellzDirect
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Transferase activity
Specific Function:
Synthesizes the second messagers cyclic ADP-ribose and nicotinate-adenine dinucleotide phosphate, the former a second messenger for glucose-induced insulin secretion. Also has cADPr hydrolase activity. Also moonlights as a receptor in cells of the immune system.
Gene Name:
CD38
Uniprot ID:
P28907
Molecular Weight:
34328.145 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.44 uMBSK_SAg_CD38_upBioSeek
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Cytokine activity
Specific Function:
Cytokine that affects the growth, movement, or activation state of cells that participate in immune and inflammatory response. Chemotactic for activated T-cells. Binds to CXCR3.
Gene Name:
CXCL9
Uniprot ID:
Q07325
Molecular Weight:
14018.72 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.44 uMBSK_hDFCGF_MIG_upBioSeek
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Platelet-derived growth factor binding
Specific Function:
Collagen type III occurs in most soft connective tissues along with type I collagen. Involved in regulation of cortical development. Is the major ligand of GPR56 in the developing brain and binding to GPR56 inhibits neuronal migration and activates the RhoA pathway by coupling GPR56 to GNA13 and possibly GNA12.
Gene Name:
COL3A1
Uniprot ID:
P02461
Molecular Weight:
138564.005 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.44 uMBSK_hDFCGF_CollagenIII_downBioSeek
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Prostaglandin e receptor activity
Specific Function:
Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. The subsequent raise in intracellular cAMP is responsible for the relaxing effect of this receptor on smooth muscle.
Gene Name:
PTGER2
Uniprot ID:
P43116
Molecular Weight:
39759.945 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.44 uMBSK_LPS_PGE2_downBioSeek
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Transcriptional activator activity, rna polymerase ii distal enhancer sequence-specific binding
Specific Function:
Transcription activator that binds to antioxidant response (ARE) elements in the promoter regions of target genes. Important for the coordinated up-regulation of genes in response to oxidative stress. May be involved in the transcriptional activation of genes of the beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the beta-globin locus control region.
Gene Name:
NFE2L2
Uniprot ID:
Q16236
Molecular Weight:
67825.9 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC507.20 uMATG_NRF2_ARE_CISAttagene
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]