Record Information
Version2.0
Creation Date2009-03-27 01:31:59 UTC
Update Date2014-12-24 20:22:44 UTC
Accession NumberT3D0740
Identification
Common NameZinc pyrithione
ClassSmall Molecule
DescriptionZinc pyrithione is a chemical compound of zinc. It is used as an antifungal and antibacterial agent. Zinc is a metallic element with the atomic number 30. It is found in nature most often as the mineral sphalerite. Though excess zinc in harmful, in smaller amounts it is an essential element for life, as it is a cofactor for over 300 enzymes and is found in just as many transcription factors. (2, 3, 4)
Compound Type
  • Aromatic Hydrocarbon
  • Household Toxin
  • Industrial/Workplace Toxin
  • Organic Compound
  • Organometallic
  • Synthetic Compound
  • Zinc Compound
Chemical Structure
Thumb
Synonyms
Synonym
(T-4)-Bis(1-hydroxy-2(1H)-pyridinethionato-O,S)zinc
2(1H)-Pyridinethione, 1-hydroxy-, zinc complex
2-Mercaptopyridine 1-oxide zinc salt
2-Mercaptopyridine-1-oxide, zinc salt
2-Pyridinethiol-1-oxide, zinc salt
Biocut ZP
Bis(1-hydroxy-2(1H)-pyridinethionato)zinc
Bis(1-hydroxy-2-(1H)-pyridinethionato)zinc
Bis(2-pyridinethiol-1-oxide)zinc
Bis(2-pyridylthio)zinc 1,1'-dioxide
Breck one dandruff shampoo
Danex
Evafine P 50
Finecide ZPT
Head and shoulders
Hokucide ZPT
Niccanon SKT
Omadine zinc
Pyrithion-zink
Pyrithione zinc
Sebulon shampoo
Tomicide Z 50
Top brass
Vancide p
Vancide ZP
Wella crisan
Zinc - pyrion
Zinc 1-hydroxy-2-pyridinethione
Zinc 1-hydroxypyridine-2-thione
Zinc 2-mercaptopyridine N-oxide
Zinc 2-pyridinethiol 1-oxide
Zinc 2-pyridinethiol-1-oxide
Zinc bis(2-pyridylthio)-N-oxide
Zinc omadine
Zinc PT
Zinc pyrethion
Zinc pyridine-2-thiol 1-oxide
Zinc pyridine-2-thiol-1-oxide
Zinc pyridinethione
Zincon dandruff shampoo
ZNPT
ZPT
Chemical FormulaC10H8N2O2S2Zn
Average Molecular Mass317.722 g/mol
Monoisotopic Mass315.932 g/mol
CAS Registry Number13463-41-7
IUPAC Namebis[(1-oxidopyridin-1-ium-2-yl)sulfanyl]zinc
Traditional Namebis[(1-oxidopyridin-1-ium-2-yl)sulfanyl]zinc
SMILES[O-][N+]1=CC=CC=C1S[Zn]SC1=CC=CC=[N+]1[O-]
InChI IdentifierInChI=1S/2C5H5NOS.Zn/c2*7-6-4-2-1-3-5(6)8;/h2*1-4,8H;/q;;+2/p-2
InChI KeyInChIKey=OTPSWLRZXRHDNX-UHFFFAOYSA-L
Chemical Taxonomy
Description belongs to the class of organic compounds known as pyridinium derivatives. Pyridinium derivatives are compounds containing a pyridinium ring, which is the cationic form of pyridine.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPyridines and derivatives
Sub ClassPyridinium derivatives
Direct ParentPyridinium derivatives
Alternative Parents
Substituents
  • Pyridinium
  • Heteroaromatic compound
  • Azacycle
  • Organic metal salt
  • Organic transition metal salt
  • Sulfenyl compound
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organic salt
  • Organosulfur compound
  • Organonitrogen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceColorless soild.
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.068 g/LALOGPS
logP0.6ALOGPS
logP-0.73ChemAxon
logS-3.7ALOGPS
pKa (Strongest Basic)0.5ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area50.92 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity63.97 m³·mol⁻¹ChemAxon
Polarizability25.82 ųChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00kr-0097000000-02bf33f2bf4a9e5381d42019-02-22View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-1059000000-320a10a81cae2a1305e12019-02-22View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0udi-4190000000-7285758091d99f2d238b2019-02-22View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-0009000000-b67fb3bbc7b620d804152019-02-23View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03di-0029000000-539f5a41cc3b8d4cf3652019-02-23View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-03di-1029000000-4e91c0f61080adfb87ff2019-02-23View Spectrum
Toxicity Profile
Route of ExposureInhalation (3) ; oral (3) ; dermal (3)
Mechanism of ToxicityAnaemia results from the excessive absorption of zinc suppressing copper and iron absorption, most likely through competitive binding of intestinal mucosal cells. Unbalanced levels of copper and zinc binding to Cu,Zn-superoxide dismutase has been linked to amyotrophic lateral sclerosis (ALS). Stomach acid dissolves metallic zinc to give corrosive zinc chloride, which can cause damage to the stomach lining. Metal fume fever is thought to be an immune response to inhaled zinc. (2, 3, 1)
MetabolismZinc can enter the body through the lungs, skin, and gastrointestinal tract. Intestinal absorption of zinc is controlled by zinc carrier protein CRIP. Zinc also binds to metallothioneins, which help prevent absorption of excess zinc. Zinc is widely distributed and found in all tissues and tissues fluids, concentrating in the liver, gastrointestinal tract, kidney, skin, lung, brain, heart, and pancreas. In the bloodstream zinc is found bound to carbonic anhydrase in erythrocytes, as well as bound to albumin, _2-macroglobulin, and amino acids in the the plasma. Albumin and amino acid bound zinc can diffuse across tissue membranes. Zinc is excreted in the urine and faeces. (3)
Toxicity ValuesLD50: 177 mg/kg (Oral, Rat) (7) LD50: 100 mg/kg (Dermal, Rabbit) (7) LC50: 140 mg/m3 over 4 hours (Inhalation, Rat) (7)
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesZinc pyrithione is used as an antifungal and antibacterial agent. (4)
Minimum Risk LevelIntermediate Oral: 0.3 mg/kg/day (6) Chronic Oral: 0.3 mg/kg/day (6)
Health EffectsChronic exposure to zinc causes anemia, atazia, lethargy, and decreases the level of good cholesterol in the body. It is also believed to cause pancreatic and reproductive damage. (3)
SymptomsIngestion of large doses of zinc causes stomach cramps, nausea, and vomiting. Acute inhalation of large amounts of zinc causes metal fume fever, which is characterized by chills, fever, headache, weakness, dryness of the nose and throat, chest pain, and coughing. Dermal contact with zinc results in skin irritation. (3)
TreatmentZinc poisoning is treated symptomatically, often by administering fluids such as water or milk, or with gastric lavage. (3)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID26041
ChEMBL IDCHEMBL1200471
ChemSpider ID24255
KEGG IDC13427
UniProt IDNot Available
OMIM ID
ChEBI ID32076
BioCyc IDNot Available
CTD IDC010423
Stitch IDZinc pyrithione
PDB IDNot Available
ACToR ID5788
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D0740.pdf
General References
  1. Vonk WI, Klomp LW: Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis. Biochem Soc Trans. 2008 Dec;36(Pt 6):1322-8. doi: 10.1042/BST0361322. [19021549 ]
  2. Wikipedia. Zinc. Last Updated 24 March 2009. [Link]
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2005). Toxicological profile for zinc. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  4. Wikipedia. Zinc pyrithione. Last Updated 23 March 2009. [Link]
  5. Wikipedia. Metallothionein. Last Updated 20 December 2008. [Link]
  6. ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  7. ScienceLab.com (2008). Material Safety Data Sheet (MSDS) for Zinc pyrithione, 48% aqueous dispersion. [Link]
Gene Regulation
Up-Regulated Genes
GeneGene SymbolGene IDInteractionChromosomeDetails
Down-Regulated Genes
GeneGene SymbolGene IDInteractionChromosomeDetails

Targets

General Function:
Zinc ion binding
Specific Function:
Destroys radicals which are normally produced within the cells and which are toxic to biological systems.
Gene Name:
SOD1
Uniprot ID:
P00441
Molecular Weight:
15935.685 Da
References
  1. Vonk WI, Klomp LW: Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis. Biochem Soc Trans. 2008 Dec;36(Pt 6):1322-8. doi: 10.1042/BST0361322. [19021549 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of ARNTL/BMAL1 in the blood vessels (By similarity).
Gene Name:
PPARG
Uniprot ID:
P37231
Molecular Weight:
57619.58 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC500.06 uMTox21_PPARg_BLA_Agonist_ratioTox21/NCGC
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, ARNTL/BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1. Also plays also a role in the regulation of hepatocyte glucose metabolism through the regulation of G6PC and PCK1. Regulates the rhythmic expression of PROX1 and promotes its nuclear localization (By similarity). Plays an indispensable role in the induction of IFN-gamma dependent anti-mycobacterial systemic immunity (PubMed:26160376).Isoform 2: Essential for thymopoiesis and the development of several secondary lymphoid tissues, including lymph nodes and Peyer's patches. Required for the generation of LTi (lymphoid tissue inducer) cells. Regulates thymocyte survival through DNA-binding on ROREs of target gene promoter regions and recruitment of coactivaros via the AF-2. Also plays a key role, downstream of IL6 and TGFB and synergistically with RORA, for lineage specification of uncommitted CD4(+) T-helper (T(H)) cells into T(H)17 cells, antagonizing the T(H)1 program. Probably regulates IL17 and IL17F expression on T(H) by binding to the essential enhancer conserved non-coding sequence 2 (CNS2) in the IL17-IL17F locus. May also play a role in the pre-TCR activation cascade leading to the maturation of alpha/beta T-cells and may participate in the regulation of DNA accessibility in the TCR-J(alpha) locus.
Gene Name:
RORC
Uniprot ID:
P51449
Molecular Weight:
58194.845 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC500.51 uMATG_RORg_TRANSAttagene
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Transcriptional repressor activity, rna polymerase ii core promoter proximal region sequence-specific binding
Specific Function:
DNA-binding protein that specifically binds heat shock promoter elements (HSE) and activates transcription. In higher eukaryotes, HSF is unable to bind to the HSE unless the cells are heat shocked.
Gene Name:
HSF1
Uniprot ID:
Q00613
Molecular Weight:
57259.87 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC500.69 uMATG_HSE_CISAttagene
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Transcriptional activator activity, rna polymerase ii core promoter proximal region sequence-specific binding
Specific Function:
Activates the metallothionein I promoter. Binds to the metal responsive element (MRE).
Gene Name:
MTF1
Uniprot ID:
Q14872
Molecular Weight:
80956.22 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC500.70 uMATG_MRE_CISAttagene
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Transcription factor activity is modulated by bound coactivator and corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3.
Gene Name:
AR
Uniprot ID:
P10275
Molecular Weight:
98987.9 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC500.73 uMTox21_AR_BLA_Agonist_ratioTox21/NCGC
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Atp binding
Specific Function:
Involved in DNA damage response. Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis. Modulates the RAD9A interaction with BCL2 and thereby induces DNA damages-induced apoptosis.
Gene Name:
ATAD5
Uniprot ID:
Q96QE3
Molecular Weight:
207568.185 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC500.78 uMTox21_ELG1_LUC_AgonistTox21/NCGC
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Isoform Alpha-1: Nuclear hormone receptor that can act as a repressor or activator of transcription. High affinity receptor for thyroid hormones, including triiodothyronine and thyroxine.Isoform Alpha-2: Does not bind thyroid hormone and functions as a weak dominant negative inhibitor of thyroid hormone action.
Gene Name:
THRA
Uniprot ID:
P10827
Molecular Weight:
54815.055 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC501.16 uMNVS_NR_hTRaNovascreen
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC502.63 uMOT_ERa_EREGFP_0120Odyssey Thera
AC506.55 uMOT_ERa_EREGFP_0480Odyssey Thera
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]