Record Information
Version2.0
Creation Date2014-10-14 21:18:14 UTC
Update Date2014-12-24 20:27:01 UTC
Accession NumberT3D4979
Identification
Common NameIsoprenaline
ClassSmall Molecule
DescriptionIsopropyl analog of epinephrine; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. [PubChem]
Compound Type
  • Adrenergic beta-Agonist
  • Bronchodilator Agent
  • Cardiotonic Agent
  • Drug
  • Metabolite
  • Sympathomimetic
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
(+-)-Isoprenaline
(+-)-Isoproterenol
(±)-isoprenaline
(±)-isoproterenol
1-(3,4-Dihydroxyphenyl)-2-(isopropylamino)ethanol
1-(3,4-Dihydroxyphenyl)-2-isopropylaminoethanol
3,4-Dihydroxy-alpha-[(isopropylamino)methyl]benzyl alcohol
alpha-(Isopropylaminomethyl)protocatechuyl alcohol
Epinephrine Isopropyl Homolog
Isoprenalin
Isoprenalina
Isoprenalinum
Isopropydrin
Isopropyl noradrenaline
Isopropyladrenaline
Isopropylarterenol
Isopropylnoradrenaline
Isopropylnorepinephrine
Isoproterenol
Isoproterenol Chloride
Isuprel
L-Isopropylnoradrenaline
L-Isoproterenol
Medihaler-Iso
N-Isopropyl-beta-dihydroxyphenyl-beta-hydroxyethylamine
N-isopropyl-β-dihydroxyphenyl-β-hydroxyethylamine
N-Isopropylnoradrenaline
N-Isopropylnorepinephrine
Proternol L
Saventrine
α-(isopropylaminomethyl)protocatechuyl alcohol
Chemical FormulaC11H17NO3
Average Molecular Mass211.258 g/mol
Monoisotopic Mass211.121 g/mol
CAS Registry Number7683-59-2
IUPAC Name4-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,2-diol
Traditional Nameisoproterenol
SMILESCC(C)NCC(O)C1=CC(O)=C(O)C=C1
InChI IdentifierInChI=1/C11H17NO3/c1-7(2)12-6-11(15)8-3-4-9(13)10(14)5-8/h3-5,7,11-15H,6H2,1-2H3
InChI KeyInChIKey=JWZZKOKVBUJMES-UHFFFAOYNA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety.
KingdomOrganic compounds
Super ClassBenzenoids
ClassPhenols
Sub ClassBenzenediols
Direct ParentCatechols
Alternative Parents
Substituents
  • Catechol
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Aralkylamine
  • Monocyclic benzene moiety
  • 1,2-aminoalcohol
  • Secondary alcohol
  • Secondary amine
  • Secondary aliphatic amine
  • Aromatic alcohol
  • Alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxygen compound
  • Organic nitrogen compound
  • Amine
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceNot Available
Experimental Properties
PropertyValue
Melting Point180 °C
Boiling PointNot Available
Solubility5.86e+00 g/L
LogP1.4
Predicted Properties
PropertyValueSource
Water Solubility5.86 g/LALOGPS
logP-0.27ALOGPS
logP0.24ChemAxon
logS-1.6ALOGPS
pKa (Strongest Acidic)9.81ChemAxon
pKa (Strongest Basic)8.96ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area72.72 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity58.4 m³·mol⁻¹ChemAxon
Polarizability23.04 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-05gr-9700000000-1d8ddbb3b9ecf4bd4e412017-09-01View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (3 TMS) - 70eV, Positivesplash10-001i-4193300000-51704909fccedbd3a27f2017-10-06View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_1_4) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_1) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_3) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_5) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_2_6) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_3) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TMS_3_4) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_2) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_1_4) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_2) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_3) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_4) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (TBDMS_2_5) - 70eV, PositiveNot Available2021-11-04View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-01ox-0940000000-a69543d0053d7699ab892016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udu-0900000000-6d817d647f12c2387c5b2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zg3-7900000000-4048df303bf76bdeb1692016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-1390000000-f9a4d1db36e6a6829da62016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-08fu-4940000000-b4ce8517db087019ae022016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-8900000000-70b5626c51c5c776cac02016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-0920000000-cf36ef242942ec87ce212021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udi-4900000000-5b84f5f51437a459c6292021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0k9j-8900000000-1d0384f1f487a005b30c2021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-0090000000-840d7dbcf79278e91a762021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-01w0-0910000000-545a4d1a8047f492d8742021-10-11View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4u-5900000000-5b03f3b94e0d996de5792021-10-11View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityThe pharmacologic effects of isoproterenol are at least in part attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic AMP. Increased cyclic AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells.
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesFor the treatment of mild or transient episodes of heart block that do not require electric shock or pacemaker therapy also used in management of asthma and chronic bronchitis
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB01064
HMDB IDHMDB15197
PubChem Compound ID3779
ChEMBL IDCHEMBL434
ChemSpider ID3647
KEGG IDC07056
UniProt IDNot Available
OMIM ID
ChEBI ID64317
BioCyc IDNot Available
CTD IDD007545
Stitch IDNot Available
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkIsoproterenol
References
Synthesis Reference

U.S. Patent 2,308,232.
U.S. Patent 2,715,141.

MSDST3D4979.pdf
General ReferencesNot Available
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Protein homodimerization activity
Specific Function:
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. The beta-2-adrenergic receptor binds epinephrine with an approximately 30-fold greater affinity than it does norepinephrine.
Gene Name:
ADRB2
Uniprot ID:
P07550
Molecular Weight:
46458.32 Da
References
  1. Abraham G, Kottke C, Dhein S, Ungemach FR: Pharmacological and biochemical characterization of the beta-adrenergic signal transduction pathway in different segments of the respiratory tract. Biochem Pharmacol. 2003 Sep 15;66(6):1067-81. [12963495 ]
  2. Jones SM, Hiller FC, Jacobi SE, Foreman SK, Pittman LM, Cornett LE: Enhanced beta2-adrenergic receptor (beta2AR) signaling by adeno-associated viral (AAV)-mediated gene transfer. BMC Pharmacol. 2003 Dec 4;3:15. [14656380 ]
  3. Teixeira CE, Baracat JS, Zanesco A, Antunes E, De Nucci G: Atypical beta-adrenoceptor subtypes mediate relaxations of rabbit corpus cavernosum. J Pharmacol Exp Ther. 2004 May;309(2):587-93. Epub 2004 Jan 29. [14752060 ]
  4. Odley A, Hahn HS, Lynch RA, Marreez Y, Osinska H, Robbins J, Dorn GW 2nd: Regulation of cardiac contractility by Rab4-modulated beta2-adrenergic receptor recycling. Proc Natl Acad Sci U S A. 2004 May 4;101(18):7082-7. Epub 2004 Apr 22. [15105445 ]
  5. Uezono Y, Kaibara M, Murasaki O, Taniyama K: Involvement of G protein betagamma-subunits in diverse signaling induced by G(i/o)-coupled receptors: study using the Xenopus oocyte expression system. Am J Physiol Cell Physiol. 2004 Oct;287(4):C885-94. Epub 2004 May 19. [15151902 ]
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
  7. Ahlquist RP: Present state of alpha- and beta-adrenergic drugs I. The adrenergic receptor. Am Heart J. 1976 Nov;92(5):661-4. [10722 ]
  8. Baker JG, Hall IP, Hill SJ: Influence of agonist efficacy and receptor phosphorylation on antagonist affinity measurements: differences between second messenger and reporter gene responses. Mol Pharmacol. 2003 Sep;64(3):679-88. [12920204 ]
General Function:
Rna polymerase ii carboxy-terminal domain kinase activity
Specific Function:
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in respons to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation.Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity.
Gene Name:
MAPK1
Uniprot ID:
P28482
Molecular Weight:
41389.265 Da
References
  1. Vaniotis G, Del Duca D, Trieu P, Rohlicek CV, Hebert TE, Allen BG: Nuclear beta-adrenergic receptors modulate gene expression in adult rat heart. Cell Signal. 2011 Jan;23(1):89-98. doi: 10.1016/j.cellsig.2010.08.007. Epub 2010 Aug 21. [20732414 ]
  2. Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T, Irie-Sasaki J, Gidrewicz D, Rybin VO, Wada T, Steinberg SF, Backx PH, Penninger JM: Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation. 2003 Oct 28;108(17):2147-52. Epub 2003 Sep 8. [12963636 ]
  3. Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Pineyro G: Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11406-11. Epub 2003 Sep 17. [13679574 ]
  4. Adissu HA, Schuller HM: Antagonistic growth regulation of cell lines derived from human lung adenocarcinomas of Clara cell and aveolar type II cell lineage: Implications for chemoprevention. Int J Oncol. 2004 Jun;24(6):1467-72. [15138589 ]
  5. Dubey RK, Jackson EK, Gillespie DG, Zacharia LC, Imthurn B: Catecholamines block the antimitogenic effect of estradiol on human coronary artery smooth muscle cells. J Clin Endocrinol Metab. 2004 Aug;89(8):3922-31. [15292328 ]
  6. Yeh CK, Ghosh PM, Dang H, Liu Q, Lin AL, Zhang BX, Katz MS: beta-Adrenergic-responsive activation of extracellular signal-regulated protein kinases in salivary cells: role of epidermal growth factor receptor and cAMP. Am J Physiol Cell Physiol. 2005 Jun;288(6):C1357-66. Epub 2005 Feb 2. [15689414 ]
General Function:
Receptor signaling protein activity
Specific Function:
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately equal affinity. Mediates Ras activation through G(s)-alpha- and cAMP-mediated signaling.
Gene Name:
ADRB1
Uniprot ID:
P08588
Molecular Weight:
51322.1 Da
References
  1. Sato M, Gong H, Terracciano CM, Ranu H, Harding SE: Loss of beta-adrenoceptor response in myocytes overexpressing the Na+/Ca(2+)-exchanger. J Mol Cell Cardiol. 2004 Jan;36(1):43-8. [14734046 ]
  2. Jurgens CW, Rau KE, Knudson CA, King JD, Carr PA, Porter JE, Doze VA: Beta1 adrenergic receptor-mediated enhancement of hippocampal CA3 network activity. J Pharmacol Exp Ther. 2005 Aug;314(2):552-60. Epub 2005 May 20. [15908512 ]
  3. Kobayashi H, Narita Y, Nishida M, Kurose H: Beta-arrestin2 enhances beta2-adrenergic receptor-mediated nuclear translocation of ERK. Cell Signal. 2005 Oct;17(10):1248-53. Epub 2005 Feb 12. [16038799 ]
  4. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
  5. Ahlquist RP: Present state of alpha- and beta-adrenergic drugs I. The adrenergic receptor. Am Heart J. 1976 Nov;92(5):661-4. [10722 ]
  6. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN: Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol. 2004 Feb;369(2):151-9. Epub 2004 Jan 17. [14730417 ]
  7. Konstandi M, Kostakis D, Harkitis P, Marselos M, Johnson EO, Adamidis K, Lang MA: Role of adrenoceptor-linked signaling pathways in the regulation of CYP1A1 gene expression. Biochem Pharmacol. 2005 Jan 15;69(2):277-87. [15627480 ]
  8. Rochais F, Vilardaga JP, Nikolaev VO, Bunemann M, Lohse MJ, Engelhardt S: Real-time optical recording of beta1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. J Clin Invest. 2007 Jan;117(1):229-35. [17200720 ]
General Function:
Transmembrane receptor protein tyrosine kinase adaptor activity
Specific Function:
Binds to activated (phosphorylated) protein-Tyr kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Necessary for the insulin-stimulated increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues. Plays an important role in signaling in response to FGFR1, FGFR2, FGFR3, FGFR4, KITLG/SCF, KIT, PDGFRA and PDGFRB. Likewise, plays a role in ITGB2 signaling (PubMed:17626883, PubMed:19805105, PubMed:7518429). Modulates the cellular response to ER stress by promoting nuclear translocation of XBP1 isoform 2 in a ER stress-and/or insulin-dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement (PubMed:20348923).
Gene Name:
PIK3R1
Uniprot ID:
P27986
Molecular Weight:
83597.675 Da
References
  1. Slomiany BL, Slomiany A: Salivary phospholipid secretion in response to beta-adrenergic stimulation is mediated by Src kinase-dependent epidermal growth factor receptor transactivation. Biochem Biophys Res Commun. 2004 May 21;318(1):247-52. [15110780 ]
  2. Slomiany BL, Slomiany A: Secretion of gastric mucus phospholipids in response to beta-adrenergic G protein-coupled receptor activation is mediated by SRC kinase-dependent epidermal growth factor receptor transactivation. J Physiol Pharmacol. 2004 Sep;55(3):627-38. [15381832 ]
  3. Slomiany BL, Slomiany A: Src-kinase-dependent epidermal growth factor receptor transactivation in salivary mucin secretion in response to beta-adrenergic G-protein-coupled receptor activation. Inflammopharmacology. 2004;12(3):233-45. [15527548 ]
  4. Machida K, Inoue H, Matsumoto K, Tsuda M, Fukuyama S, Koto H, Aizawa H, Kureishi Y, Hara N, Nakanishi Y: Activation of PI3K-Akt pathway mediates antiapoptotic effects of beta-adrenergic agonist in airway eosinophils. Am J Physiol Lung Cell Mol Physiol. 2005 May;288(5):L860-7. Epub 2004 Dec 23. [15618457 ]
  5. Slomiany BL, Slomiany A: Gastric mucin secretion in response to beta-adrenergic G protein-coupled receptor activation is mediated by SRC kinase-dependent epidermal growth factor receptor transactivation. J Physiol Pharmacol. 2005 Jun;56(2):247-58. [15985706 ]
General Function:
Receptor tyrosine kinase binding
Specific Function:
Regulatory subunit of phosphoinositide-3-kinase (PI3K), a kinase that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Binds to activated (phosphorylated) protein-tyrosine kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Indirectly regulates autophagy (PubMed:23604317). Promotes nuclear translocation of XBP1 isoform 2 in a ER stress- and/or insulin-dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement (By similarity).
Gene Name:
PIK3R2
Uniprot ID:
O00459
Molecular Weight:
81544.505 Da
References
  1. Slomiany BL, Slomiany A: Salivary phospholipid secretion in response to beta-adrenergic stimulation is mediated by Src kinase-dependent epidermal growth factor receptor transactivation. Biochem Biophys Res Commun. 2004 May 21;318(1):247-52. [15110780 ]
  2. Slomiany BL, Slomiany A: Secretion of gastric mucus phospholipids in response to beta-adrenergic G protein-coupled receptor activation is mediated by SRC kinase-dependent epidermal growth factor receptor transactivation. J Physiol Pharmacol. 2004 Sep;55(3):627-38. [15381832 ]
  3. Slomiany BL, Slomiany A: Src-kinase-dependent epidermal growth factor receptor transactivation in salivary mucin secretion in response to beta-adrenergic G-protein-coupled receptor activation. Inflammopharmacology. 2004;12(3):233-45. [15527548 ]
  4. Machida K, Inoue H, Matsumoto K, Tsuda M, Fukuyama S, Koto H, Aizawa H, Kureishi Y, Hara N, Nakanishi Y: Activation of PI3K-Akt pathway mediates antiapoptotic effects of beta-adrenergic agonist in airway eosinophils. Am J Physiol Lung Cell Mol Physiol. 2005 May;288(5):L860-7. Epub 2004 Dec 23. [15618457 ]
  5. Slomiany BL, Slomiany A: Gastric mucin secretion in response to beta-adrenergic G protein-coupled receptor activation is mediated by SRC kinase-dependent epidermal growth factor receptor transactivation. J Physiol Pharmacol. 2005 Jun;56(2):247-58. [15985706 ]
General Function:
Protein homodimerization activity
Specific Function:
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. Beta-3 is involved in the regulation of lipolysis and thermogenesis.
Gene Name:
ADRB3
Uniprot ID:
P13945
Molecular Weight:
43518.615 Da
References
  1. Ahlquist RP: Present state of alpha- and beta-adrenergic drugs I. The adrenergic receptor. Am Heart J. 1976 Nov;92(5):661-4. [10722 ]
  2. Schiffelers SL, Blaak EE, Saris WH, van Baak MA: In vivo beta3-adrenergic stimulation of human thermogenesis and lipid use. Clin Pharmacol Ther. 2000 May;67(5):558-66. [10824635 ]
  3. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN: Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol. 2004 Feb;369(2):151-9. Epub 2004 Jan 17. [14730417 ]
  4. Feve B, Emorine LJ, Lasnier F, Blin N, Baude B, Nahmias C, Strosberg AD, Pairault J: Atypical beta-adrenergic receptor in 3T3-F442A adipocytes. Pharmacological and molecular relationship with the human beta 3-adrenergic receptor. J Biol Chem. 1991 Oct 25;266(30):20329-36. [1682311 ]
General Function:
1-phosphatidylinositol-3-kinase regulator activity
Specific Function:
Binds to activated (phosphorylated) protein-tyrosine kinases through its SH2 domain and regulates their kinase activity. During insulin stimulation, it also binds to IRS-1.
Gene Name:
PIK3R3
Uniprot ID:
Q92569
Molecular Weight:
54448.0 Da
References
  1. Slomiany BL, Slomiany A: Salivary phospholipid secretion in response to beta-adrenergic stimulation is mediated by Src kinase-dependent epidermal growth factor receptor transactivation. Biochem Biophys Res Commun. 2004 May 21;318(1):247-52. [15110780 ]
  2. Slomiany BL, Slomiany A: Secretion of gastric mucus phospholipids in response to beta-adrenergic G protein-coupled receptor activation is mediated by SRC kinase-dependent epidermal growth factor receptor transactivation. J Physiol Pharmacol. 2004 Sep;55(3):627-38. [15381832 ]
  3. Slomiany BL, Slomiany A: Src-kinase-dependent epidermal growth factor receptor transactivation in salivary mucin secretion in response to beta-adrenergic G-protein-coupled receptor activation. Inflammopharmacology. 2004;12(3):233-45. [15527548 ]
  4. Machida K, Inoue H, Matsumoto K, Tsuda M, Fukuyama S, Koto H, Aizawa H, Kureishi Y, Hara N, Nakanishi Y: Activation of PI3K-Akt pathway mediates antiapoptotic effects of beta-adrenergic agonist in airway eosinophils. Am J Physiol Lung Cell Mol Physiol. 2005 May;288(5):L860-7. Epub 2004 Dec 23. [15618457 ]
  5. Slomiany BL, Slomiany A: Gastric mucin secretion in response to beta-adrenergic G protein-coupled receptor activation is mediated by SRC kinase-dependent epidermal growth factor receptor transactivation. J Physiol Pharmacol. 2005 Jun;56(2):247-58. [15985706 ]