Record Information
Version2.0
Creation Date2014-08-29 04:48:23 UTC
Update Date2014-12-24 20:26:35 UTC
Accession NumberT3D3973
Identification
Common NameMonoethylhexyl phthalic acid
ClassSmall Molecule
DescriptionMonoethylhexyl phthalic acid (MEHP) is an active metabolite of Bis(2-ethylhexyl)phthalate (DEHP). DEHP measured from the blood of pregnant women have been significantly associated with the decreased penis width, shorter anogenital distance, and the incomplete descent of testes of their newborn sons, replicating effects identified in animals. DEHP hydrolyzes to MEHP via the enzyme Bis(2-ethylhexyl)phthalate acylhydrolase(3.1.1.60)and subsequently to phthalate salts. The released alcohol is susceptible to oxidation to the aldehyde and carboxylic acid.
Compound Type
  • Animal Toxin
  • Ester
  • Ether
  • Food Toxin
  • Industrial/Workplace Toxin
  • Metabolite
  • Natural Compound
  • Organic Compound
Chemical Structure
Thumb
Synonyms
Synonym
1,2-Benzenedicarboxylicacid,mono(2-ethylhexyl)ester
2-ETHYLHEXYL HYDROGEN PHTHALATE
MEHP
MONO-2-ETHYLHEXYL PHTHALATE
Mono-ethylhexyl
Mono-ethylhexylphthalate
Monoethylhexyl phthalate
Monoethylhexyl phthalate (mEHP)
Monoethylhexylphthalate
MONOOCTYL PHTHALATE
Phthalic acid 1-hydrogen 2-(2-ethylhexyl) ester
Phthalic acid hydrogen 1-(2-ethylhexyl) ester
PHTHALIC ACID MONO-2-ETHYLHEXYL ESTER
PHTHALIC ACID MONOOCTYL ESTER
Phthalicacid,2-ethylhexylester
PHTHALICACIDMONO-2-ETHYLEXYLESTER
PHTHALICACIDMONOETHYLHEXYL
Phthalicacidmonoethylhexylester
Chemical FormulaC16H22O4
Average Molecular Mass278.344 g/mol
Monoisotopic Mass278.152 g/mol
CAS Registry Number4376-20-9
IUPAC Name2-{[(2-ethylhexyl)oxy]carbonyl}benzoic acid
Traditional Namebar 1
SMILESCCCCC(CC)COC(=O)C1=CC=CC=C1C(O)=O
InChI IdentifierInChI=1/C16H22O4/c1-3-5-8-12(4-2)11-20-16(19)14-10-7-6-9-13(14)15(17)18/h6-7,9-10,12H,3-5,8,11H2,1-2H3,(H,17,18)
InChI KeyInChIKey=DJDSLBVSSOQSLW-UHFFFAOYNA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassBenzoic acids and derivatives
Direct ParentBenzoic acid esters
Alternative Parents
Substituents
  • Benzoate ester
  • Benzoic acid
  • Benzoyl
  • Dicarboxylic acid or derivatives
  • Carboxylic acid ester
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.013 g/LALOGPS
logP4.36ALOGPS
logP4.66ChemAxon
logS-4.3ALOGPS
pKa (Strongest Acidic)3.08ChemAxon
pKa (Strongest Basic)-7ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area63.6 ŲChemAxon
Rotatable Bond Count9ChemAxon
Refractivity77.49 m³·mol⁻¹ChemAxon
Polarizability30.96 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00dj-2970000000-346112e2dd7eb2ef672f2017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00dj-2970000000-346112e2dd7eb2ef672f2018-05-18View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0002-5920000000-6756fbba86aadca647ce2017-09-01View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positivesplash10-00di-7392000000-fd40ccd8c52320562e5c2017-10-06View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-006t-0960000000-efbb62fb904150b613f22021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 15V, Positivesplash10-006t-0960000000-bace63e54682391af6712021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 45V, Positivesplash10-00kb-0910000000-77eed661ab413010d3542021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 60V, Positivesplash10-00mk-0900000000-214bdb75cf5614522a032021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 45V, Negativesplash10-00ai-0900000000-d636e4277afd375744d22021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-001i-0900000000-e6f221aefc0e24f648d52021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 75V, Positivesplash10-002b-0900000000-d8cdf715271ec6e661b82021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 15V, Negativesplash10-0059-0940000000-bbc0013de532edede4832021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 90V, Negativesplash10-004i-9100000000-d5a5ecd4f3c706f53a0f2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 45V, Positivesplash10-00kb-0910000000-a2eba6e125597cb7530d2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 60V, Negativesplash10-00b9-2900000000-1d8439ed7614ed7148222021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 75V, Negativesplash10-004i-9800000000-3f611dc53f826ce065362021-09-20View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-03fr-0790000000-972234c38f1e6baf99092016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-03di-4930000000-1ab987bce4973d4f07f42016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4l-9500000000-53028683cce560c7a65b2016-08-01View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0490000000-44a004dad8099c4e00de2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00w9-1940000000-8169435369a241584a632016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00fr-6900000000-56a7cc157be52d6494f32016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-004i-0290000000-bf11acdb8d5f1fa06aa52021-09-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0532-2940000000-474dfefcab564610df5f2021-09-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a4i-9500000000-0b315e8ad86892867d122021-09-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0290000000-048ea11376b7fe3280072021-09-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00b9-5950000000-012e94386a547e3c0c232021-09-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004i-9410000000-a8dbecb62f34e602da892021-09-25View Spectrum
MSMass Spectrum (Electron Ionization)splash10-0002-4900000000-af0f2c76a7c01b845a002014-09-20View Spectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesNot Available
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB13248
PubChem Compound ID20393
ChEMBL IDCHEMBL1867438
ChemSpider ID19208
KEGG IDC03343
UniProt IDNot Available
OMIM ID
ChEBI ID17243
BioCyc IDNot Available
CTD IDNot Available
Stitch IDNot Available
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D3973.pdf
General References
  1. Hasmall S, Orphanides G, James N, Pennie W, Hedley K, Soames A, Kimber I, Roberts R: Downregulation of lactoferrin by PPARalpha ligands: role in perturbation of hepatocyte proliferation and apoptosis. Toxicol Sci. 2002 Aug;68(2):304-13. [12151626 ]
  2. Hasmall SC, James NH, Macdonald N, West D, Chevalier S, Cosulich SC, Roberts RA: Suppression of apoptosis and induction of DNA synthesis in vitro by the phthalate plasticizers monoethylhexylphthalate (MEHP) and diisononylphthalate (DINP): a comparison of rat and human hepatocytes in vitro. Arch Toxicol. 1999 Nov;73(8-9):451-6. [10650916 ]
  3. Anderson WA, Barnes KA, Castle L, Damant AP, Scotter MJ: Determination of isotopically labelled monoesterphthalates in urine by high performance liquid chromatography-mass spectrometry. Analyst. 2002 Sep;127(9):1193-7. [12375842 ]
  4. Marttinen SK, Kettunen RH, Sormunen KM, Rintala JA: Removal of bis(2-ethylhexyl) phthalate at a sewage treatment plant. Water Res. 2003 Mar;37(6):1385-93. [12598201 ]
  5. Quintana JB, Rodil R, Reemtsma T: Determination of phosphoric acid mono- and diesters in municipal wastewater by solid-phase extraction and ion-pair liquid chromatography-tandem mass spectrometry. Anal Chem. 2006 Mar 1;78(5):1644-50. [16503618 ]
  6. Luisi S, Latini G, de Felice C, Sanseverino F, di Pasquale D, Mazzeo P, Petraglia F: Low serum concentrations of di-(2-ethylhexyl)phthalate in women with uterine fibromatosis. Gynecol Endocrinol. 2006 Feb;22(2):92-5. [16603434 ]
  7. Howdeshell KL, Furr J, Lambright CR, Rider CV, Wilson VS, Gray LE Jr: Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: altered fetal steroid hormones and genes. Toxicol Sci. 2007 Sep;99(1):190-202. Epub 2007 Mar 30. [17400582 ]
  8. Lovekamp-Swan T, Davis BJ: Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect. 2003 Feb;111(2):139-45. [12573895 ]
  9. Kambia K, Dine T, Gressier B, Dupin-Spriet T, Luyckx M, Brunet C: Evaluation of the direct toxicity of trioctyltrimellitate (TOTM), di(2-ethylhexyl) phthalate (DEHP) and their hydrolysis products on isolated rat hepatocytes. Int J Artif Organs. 2004 Nov;27(11):971-8. [15636055 ]
  10. Rosado-Berrios CA, Velez C, Zayas B: Mitochondrial permeability and toxicity of diethylhexyl and monoethylhexyl phthalates on TK6 human lymphoblasts cells. Toxicol In Vitro. 2011 Dec;25(8):2010-6. doi: 10.1016/j.tiv.2011.08.001. Epub 2011 Aug 16. [21864672 ]
  11. Rokos CL, Ledwith BJ: Peroxisome proliferators activate extracellular signal-regulated kinases in immortalized mouse liver cells. J Biol Chem. 1997 May 16;272(20):13452-7. [9148971 ]
  12. Forgacs AL, Ding Q, Jaremba RG, Huhtaniemi IT, Rahman NA, Zacharewski TR: BLTK1 murine Leydig cells: a novel steroidogenic model for evaluating the effects of reproductive and developmental toxicants. Toxicol Sci. 2012 Jun;127(2):391-402. doi: 10.1093/toxsci/kfs121. Epub 2012 Mar 29. [22461451 ]
  13. Janer G, Verhoef A, Gilsing HD, Piersma AH: Use of the rat postimplantation embryo culture to assess the embryotoxic potency within a chemical category and to identify toxic metabolites. Toxicol In Vitro. 2008 Oct;22(7):1797-805. doi: 10.1016/j.tiv.2008.07.007. Epub 2008 Jul 15. [18675337 ]
  14. Theunissen PT, Robinson JF, Pennings JL, van Herwijnen MH, Kleinjans JC, Piersma AH: Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn). Toxicol Appl Pharmacol. 2012 Aug 1;262(3):330-40. doi: 10.1016/j.taap.2012.05.011. Epub 2012 May 23. [22634333 ]
  15. Hoppin JA, Brock JW, Davis BJ, Baird DD: Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect. 2002 May;110(5):515-8. [12003755 ]
  16. Kato K, Shoda S, Takahashi M, Doi N, Yoshimura Y, Nakazawa H: Determination of three phthalate metabolites in human urine using on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 May 25;788(2):407-11. [12705982 ]
  17. Koo HJ, Lee BM: Human monitoring of phthalates and risk assessment. J Toxicol Environ Health A. 2005 Aug 27;68(16):1379-92. [16009652 ]
  18. Kim SH, Chun S, Jang JY, Chae HD, Kim CH, Kang BM: Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case-control study. Fertil Steril. 2011 Jan;95(1):357-9. doi: 10.1016/j.fertnstert.2010.07.1059. Epub 2010 Aug 25. [20797718 ]
  19. Ge RS, Chen GR, Dong Q, Akingbemi B, Sottas CM, Santos M, Sealfon SC, Bernard DJ, Hardy MP: Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats. J Androl. 2007 Jul-Aug;28(4):513-20. Epub 2007 Feb 7. [17287459 ]
  20. Hoppin JA, Ulmer R, London SJ: Phthalate exposure and pulmonary function. Environ Health Perspect. 2004 Apr;112(5):571-4. [15064163 ]
  21. Barron MG, Schultz IR, Hayton WL: Presystemic branchial metabolism limits di-2-ethylhexyl phthalate accumulation in fish. Toxicol Appl Pharmacol. 1989 Mar 15;98(1):49-57. [2929021 ]
  22. Holm A, Solbu K, Molander P, Lundanes E, Greibrokk T: Sensitive biomonitoring of phthalate metabolites in human urine using packed capillary column switching liquid chromatography coupled to electrospray ionization ion-trap mass spectrometry. Anal Bioanal Chem. 2004 Apr;378(7):1762-8. Epub 2004 Jan 31. [14758462 ]
  23. Christen V, Crettaz P, Oberli-Schrammli A, Fent K: Some flame retardants and the antimicrobials triclosan and triclocarban enhance the androgenic activity in vitro. Chemosphere. 2010 Nov;81(10):1245-52. doi: 10.1016/j.chemosphere.2010.09.031. Epub 2010 Oct 12. [20943248 ]
  24. Ellero-Simatos S, Claus SP, Benelli C, Forest C, Letourneur F, Cagnard N, Beaune PH, de Waziers I: Combined transcriptomic-(1)H NMR metabonomic study reveals that monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes. J Proteome Res. 2011 Dec 2;10(12):5493-502. doi: 10.1021/pr200765v. Epub 2011 Nov 9. [22017230 ]
  25. Rose ML, Rivera CA, Bradford BU, Graves LM, Cattley RC, Schoonhoven R, Swenberg JA, Thurman RG: Kupffer cell oxidant production is central to the mechanism of peroxisome proliferators. Carcinogenesis. 1999 Jan;20(1):27-33. [9934846 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Sodium-independent organic anion transmembrane transporter activity
Specific Function:
Mediates the Na(+)-independent uptake of organic anions such as pravastatin, taurocholate, methotrexate, dehydroepiandrosterone sulfate, 17-beta-glucuronosyl estradiol, estrone sulfate, prostaglandin E2, thromboxane B2, leukotriene C3, leukotriene E4, thyroxine and triiodothyronine. Involved in the clearance of bile acids and organic anions from the liver.
Gene Name:
SLCO1B1
Uniprot ID:
Q9Y6L6
Molecular Weight:
76447.99 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC500.01 uMCLZD_SLCO1B1_24CellzDirect
AC500.02 uMCLZD_SLCO1B1_48CellzDirect
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Type iii transforming growth factor beta receptor binding
Specific Function:
Multifunctional protein that controls proliferation, differentiation and other functions in many cell types. Many cells synthesize TGFB1 and have specific receptors for it. It positively and negatively regulates many other growth factors. It plays an important role in bone remodeling as it is a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts. Can promote either T-helper 17 cells (Th17) or regulatory T-cells (Treg) lineage differentiation in a concentration-dependent manner. At high concentrations, leads to FOXP3-mediated suppression of RORC and down-regulation of IL-17 expression, favoring Treg cell development. At low concentrations in concert with IL-6 and IL-21, leads to expression of the IL-17 and IL-23 receptors, favoring differentiation to Th17 cells.
Gene Name:
TGFB1
Uniprot ID:
P01137
Molecular Weight:
44340.685 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.44 uMBSK_BE3C_TGFb1_downBioSeek
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular Weight:
55627.365 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC509.70 uMNVS_ADME_hCYP2C9Novascreen
AC505.22 uMNVS_ADME_hCYP2C9Novascreen
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Vitamin d3 25-hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide (PubMed:11159812). Catalyzes 4-beta-hydroxylation of cholesterol. May catalyze 25-hydroxylation of cholesterol in vitro (PubMed:21576599).
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular Weight:
57342.67 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC505.77 uMCLZD_CYP3A4_24CellzDirect
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Steroid hydroxylase activity
Specific Function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular Weight:
55930.545 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC506.10 uMNVS_ADME_hCYP2C19Novascreen
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2.
Gene Name:
PPARA
Uniprot ID:
Q07869
Molecular Weight:
52224.595 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC506.46 uMNCGC_PPARa_AgonistNCGC
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular Weight:
56277.81 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC509.51 uMCLZD_CYP2B6_6CellzDirect
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]