Record Information |
---|
Version | 2.0 |
---|
Creation Date | 2009-06-19 21:58:52 UTC |
---|
Update Date | 2014-12-24 20:24:02 UTC |
---|
Accession Number | T3D1501 |
---|
Identification |
---|
Common Name | Dihydroxyaluminium |
---|
Class | Small Molecule |
---|
Description | Aluminium monostearate is an organic compound which is a salt of stearic acid and aluminium. It has the molecular formula Al(OH)2C18H35O2. It is also referred to as dihydroxyaluminium or dihydroxy(stearato)aluminium. It is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. It is usually safe in commercial products, but aluminium may accumulate in the body. |
---|
Compound Type | - Aluminum Compound
- Amine
- Drug
- Metabolite
- Organic Compound
- Organometallic
- Synthetic Compound
|
---|
Chemical Structure | |
---|
Synonyms | Synonym | Alumanyl 2-aminoacetate dihydrate | Dihydroxyaluminum aminoacetate |
|
---|
Chemical Formula | C2H8AlNO4 |
---|
Average Molecular Mass | 137.071 g/mol |
---|
Monoisotopic Mass | 137.027 g/mol |
---|
CAS Registry Number | 13682-92-3 |
---|
IUPAC Name | [(2-aminoacetyl)oxy]alumanylidene dihydrate |
---|
Traditional Name | [(2-aminoacetyl)oxy]alumanylidene dihydrate |
---|
SMILES | O.O.[Al+].NCC([O-])=O |
---|
InChI Identifier | InChI=1S/C2H5NO2.Al.2H2O/c3-1-2(4)5;;;/h1,3H2,(H,4,5);;2*1H2/q;+1;;/p-1 |
---|
InChI Key | InChIKey=RBNPZEHAODHBPZ-UHFFFAOYSA-M |
---|
Chemical Taxonomy |
---|
Description | belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Alpha amino acids and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Alpha-amino acid or derivatives
- Carboxylic acid salt
- Monocarboxylic acid or derivatives
- Organic metal salt
- Organic nitrogen compound
- Hydrocarbon derivative
- Organic oxide
- Organic salt
- Primary amine
- Organooxygen compound
- Organonitrogen compound
- Organopnictogen compound
- Primary aliphatic amine
- Organic oxygen compound
- Carbonyl group
- Amine
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | Not Available |
---|
Biological Properties |
---|
Status | Detected and Not Quantified |
---|
Origin | Exogenous |
---|
Cellular Locations | |
---|
Biofluid Locations | Not Available |
---|
Tissue Locations | Not Available |
---|
Pathways | Not Available |
---|
Applications | Not Available |
---|
Biological Roles | Not Available |
---|
Chemical Roles | Not Available |
---|
Physical Properties |
---|
State | Solid |
---|
Appearance | White powder. |
---|
Experimental Properties | Property | Value |
---|
Melting Point | Not Available | Boiling Point | Not Available | Solubility | Not Available | LogP | -1.85 |
|
---|
Predicted Properties | |
---|
Spectra |
---|
Spectra | Spectrum Type | Description | Splash Key | Deposition Date | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0006-0900000000-7a6f8b9e624d48664e9a | 2016-06-03 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-0006-0900000000-7a6f8b9e624d48664e9a | 2016-06-03 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-0006-0900000000-7a6f8b9e624d48664e9a | 2016-06-03 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Negative | splash10-0006-0900000000-efc1446bd72cb1ca4470 | 2016-08-03 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Negative | splash10-0006-0900000000-efc1446bd72cb1ca4470 | 2016-08-03 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Negative | splash10-0006-0900000000-efc1446bd72cb1ca4470 | 2016-08-03 | View Spectrum |
|
---|
Toxicity Profile |
---|
Route of Exposure | Oral (5) ; inhalation (5) |
---|
Mechanism of Toxicity | The main target organs of aluminum are the central nervous system and bone. Aluminum binds with dietary phosphorus and impairs gastrointestinal absorption of phosphorus. The decreased phosphate body burden results in osteomalacia (softening of the bones due to defective bone mineralization) and rickets. Aluminum's neurotoxicity is believed to involve several mechanisms. Changes in cytoskeletal protein functions as a results of altered phosphorylation, proteolysis, transport, and synthesis are believed to be one cause. Aluminum may induce neurobehavioral effects by affecting permeability of the blood-brain barrier, cholinergic activity, signal transduction pathways, lipid peroxidation, and impair neuronal glutamate nitric oxide-cyclic GMP pathway, as well as interfere with metabolism of essential trace elements because of similar coordination chemistries and consequent competitive interactions. It has been suggested that aluminum's interaction with estrogen receptors increases the expression of estrogen-related genes and thereby contributes to the progression of breast cancer (1), but studies have not been able to establish a clear link between aluminum and increased risk of breast cancer (3). Certain aluminum salts induce immune responses by activating inflammasomes. (5, 1, 2) Aluminum hydroxide is one component of the antacids recommended in the treatment of stomach ulcers and gastritis. Antacids perform a neutralization reaction, ie. they buffer gastric acid, raising the pH to reduce acidity in the stomach. When gastric hydrochloric acid reaches the nerves in the gasitrointestinal mucosa, they signal pain to the central nervous system. This happens when these nerves are exposed, as in peptic ulcers. The gastric acid may also reach ulcers in the esophagus or the duodenum. Other mechanisms may contribute, such as the effect of aluminum ions inhibiting smooth muscle cell contraction and delaying gastric emptying. Aluminum is known to bind troponin C (a muscle protein) and to interfere with voltage-dependent calcium transport. Aluminum also binds to and inhibits the activity of mitochondrial voltage gated channels (VDAC). |
---|
Metabolism | Aluminum is poorly absorbed following either oral or inhalation exposure and is essentially not absorbed dermally. The bioavailability of aluminum is strongly influenced by the aluminum compound and the presence of dietary constituents which can complex with aluminum and enhance or inhibit its absorption. Aluminum binds to various ligands in the blood and distributes to every organ, with highest concentrations found in bone and lung tissues. In living organisms, aluminum is believed to exist in four different forms: as free ions, as low-molecular-weight complexes, as physically bound macromolecular complexes, and as covalently bound macromolecular complexes. Absorbed aluminum is excreted principally in the urine and, to a lesser extent, in the bile, while unabsorbed aluminum is excreted in the faeces. (5) |
---|
Toxicity Values | Not Available |
---|
Lethal Dose | Not Available |
---|
Carcinogenicity (IARC Classification) | Not listed by IARC. IARC classified aluminum production as carcinogenic to humans (Group 1), but did not implicate aluminum itself as a human carcinogen. (8) A link between use of aluminum-containing antiperspirants and increased risk of breast cancer has been proposed (1), but studies have not been able to establish a clear link (3). |
---|
Uses/Sources | Aluminium glycinate is an antacid. (7) |
---|
Minimum Risk Level | Intermediate Oral: 1.0 mg/kg/day (4)
Chronic Oral: 1.0 mg/kg/day (4) |
---|
Health Effects | Aluminum targets the nervous system and causes decreased nervous system performance and is associated with altered function of the blood-brain barrier. The accumulation of aluminum in the body may cause bone or brain diseases. High levels of aluminum have been linked to Alzheimer's disease. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium. (5, 6) |
---|
Symptoms | Inhalating aluminum dust causes coughing and abnormal chest X-rays. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium. (5, 6) |
---|
Treatment | Not Available |
---|
Normal Concentrations |
---|
| Not Available |
---|
Abnormal Concentrations |
---|
| Not Available |
---|
External Links |
---|
DrugBank ID | DB01375 |
---|
HMDB ID | HMDB15457 |
---|
PubChem Compound ID | 18502861 |
---|
ChEMBL ID | Not Available |
---|
ChemSpider ID | 17615602 |
---|
KEGG ID | Not Available |
---|
UniProt ID | Not Available |
---|
OMIM ID | |
---|
ChEBI ID | Not Available |
---|
BioCyc ID | Not Available |
---|
CTD ID | C007420 |
---|
Stitch ID | Aluminium glycinate |
---|
PDB ID | Not Available |
---|
ACToR ID | 20148 |
---|
Wikipedia Link | Aluminium_monostearate |
---|
References |
---|
Synthesis Reference | Jeffrey L. Kaufman, “Preparation of dihydroxyaluminium sodium carbonate.” U.S. Patent US4438085, issued October, 1977. |
---|
MSDS | Not Available |
---|
General References | - Darbre PD: Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006 May-Jun;26(3):191-7. [16489580 ]
- Aimanianda V, Haensler J, Lacroix-Desmazes S, Kaveri SV, Bayry J: Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci. 2009 Jun;30(6):287-95. doi: 10.1016/j.tips.2009.03.005. Epub 2009 May 11. [19439372 ]
- Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IM, Momoli F, Krewski D: Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol. 2014 Oct;44 Suppl 4:1-80. doi: 10.3109/10408444.2014.934439. [25233067 ]
- ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
- ATSDR - Agency for Toxic Substances and Disease Registry (2008). Toxicological profile for aluminum. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
- Wikipedia. Aluminium. Last Updated 16 June 2009. [Link]
- Wikipedia. Aluminium glycinate. Last Updated 20 March 2009. [Link]
- International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
|
---|
Gene Regulation |
---|
Up-Regulated Genes | Not Available |
---|
Down-Regulated Genes | Not Available |
---|