Record Information
Version2.0
Creation Date2014-09-05 17:10:19 UTC
Update Date2014-12-24 20:26:52 UTC
Accession NumberT3D4578
Identification
Common NameQuinone
ClassSmall Molecule
DescriptionQuinone is also called 1,4-benzoquinone or cyclohexadienedione. Quinones are oxidized derivatives of aromatic compounds and are often readily made from reactive aromatic compounds with electron-donating substituents such as phenols and catechols, which increase the nucleophilicity of the ring and contributes to the large redox potential needed to break aromaticity. Derivatives of quinones are common constituents of biologically relevant molecules. Some serve as electron acceptors in electron transport chains such as those in photosynthesis (plastoquinone, phylloquinone), and aerobic respiration (ubiquinone). Quinone is a common constituent of biologically relevant molecules (e.g. Vitamin K1 is phylloquinone). A natural example of quinones as oxidizing agents is the spray of bombardier beetles. Hydroquinone is reacted with hydrogen peroxide to produce a fiery blast of steam, a strong deterent in the animal world.
Compound Type
  • Food Toxin
  • Household Toxin
  • Industrial/Workplace Toxin
  • Ketone
  • Metabolite
  • Organic Compound
  • Pollutant
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
1,4-Benzoquine
1,4-Benzoquinone
1,4-Cyclohexadiene dioxide
1,4-Cyclohexadienedione
1,4-Diossibenzene
1,4-Dioxy-benzol
1,4-Dioxybenzene
2,5-Cyclohexadiene-1,4-dione
2,5-cyclohexadiene-1-4-dione
Benzo-1,4-quinone
Benzo-chinon
Benzoquinone
Chinon
Chinone
Cyclohexadiene-1,4-dione
Cyclohexadienedione
Eldoquin
p-Benzoquinone
p-Chinon
p-Quinone
Para-Benzoquinone
Para-Quinone
Quinone1,4-Benzoquinone
Semiquinone anion
Semiquinone radicals
Chemical FormulaC6H4O2
Average Molecular Mass108.095 g/mol
Monoisotopic Mass108.021 g/mol
CAS Registry Number106-51-4
IUPAC Namecyclohexa-2,5-diene-1,4-dione
Traditional Namequinone
SMILESO=C1C=CC(=O)C=C1
InChI IdentifierInChI=1S/C6H4O2/c7-5-1-2-6(8)4-3-5/h1-4H
InChI KeyInChIKey=AZQWKYJCGOJGHM-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as p-benzoquinones. These are benzoquinones where the two C=O groups are attached at the 1- and 4-positions, respectively.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbonyl compounds
Direct ParentP-benzoquinones
Alternative Parents
Substituents
  • P-benzoquinone
  • Organic oxide
  • Hydrocarbon derivative
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue Locations
  • Bone Marrow
  • Fibroblasts
  • Kidney
  • Liver
  • Neuron
  • Skeletal Muscle
PathwaysNot Available
ApplicationsNot Available
Biological Roles
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point115.7 °C
Boiling PointSublimes
Solubility11.1 mg/mL at 18 °C
LogP0.2
Predicted Properties
PropertyValueSource
Water Solubility45.4 g/LALOGPS
logP0.21ALOGPS
logP1.02ChemAxon
logS-0.38ALOGPS
pKa (Strongest Basic)-7.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area34.14 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity31.03 m³·mol⁻¹ChemAxon
Polarizability9.75 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0zgi-9500000000-c8bfbbc465fad7929f872017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00xr-1900000000-9b99afb0e9c6350434a42017-09-12View Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-0zgi-9500000000-c8bfbbc465fad7929f872018-05-18View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00xr-1900000000-9b99afb0e9c6350434a42018-05-18View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0a4i-9500000000-6664b553a87d4fc15f942016-09-22View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0a4i-7900000000-fca2433f986ba378f8c92012-07-25View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-00or-9000000000-6897ef153b4119e50ceb2012-07-25View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-014u-9000000000-9bddbff45c6d0d3e0cf12012-07-25View Spectrum
LC-MS/MSLC-MS/MS Spectrum - EI-B (JEOL JMS-D-3000) , Positivesplash10-0zgi-9500000000-c8bfbbc465fad7929f872012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - ESI-QFT 7V, negativesplash10-014i-1900000000-6d13549d8c534563dc9b2020-07-21View Spectrum
LC-MS/MSLC-MS/MS Spectrum - ESI-QFT 9V, negativesplash10-014i-1900000000-af62dc0334e009fe3e5b2020-07-21View Spectrum
LC-MS/MSLC-MS/MS Spectrum - ESI-QFT 14V, negativesplash10-014i-3900000000-1167cf77177c0761168e2020-07-21View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-0900000000-d886efcfed5b0135bcd52016-09-12View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-1900000000-7f5c75e048ee2f454e332016-09-12View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0a6r-9100000000-db1ffa9cf092dd5e45512016-09-12View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0900000000-648d78080240a1294e4c2016-09-12View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-0900000000-648d78080240a1294e4c2016-09-12View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-5900000000-0f04c7bee6397237ee212016-09-12View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-0900000000-2c6cb60a5040c62399202021-09-23View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-4900000000-f1f9c8ded0fe97bb684d2021-09-23View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-03di-9000000000-3c2c54b9382bddbdf0df2021-09-23View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0a4i-0900000000-62ea0dd9303aae554ccd2021-09-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0a4i-2900000000-7966cc06756dd3b8c7362021-09-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004i-9000000000-28217a7272677bec662a2021-09-24View Spectrum
MSMass Spectrum (Electron Ionization)splash10-0zgi-9200000000-8777cde0dbcbb2157cdd2014-09-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Not Available2012-12-05View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, CDCl3, experimental)Not Available2014-09-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25.16 MHz, CDCl3, experimental)Not Available2014-09-23View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-25View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, 5%_DMSO, experimental)Not Available2012-12-05View Spectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityQuinone is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen.
MetabolismParaoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of OP exposure.
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)3, not classifiable as to its carcinogenicity to humans. (20)
Uses/SourcesThis is an endogenously produced metabolite found in the human body. It is used in metabolic reactions, catabolic reactions or waste generation.
Minimum Risk LevelNot Available
Health EffectsAcute exposure to cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Accumulation of ACh at motor nerves causes overstimulation of nicotinic expression at the neuromuscular junction. When this occurs symptoms such as muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis can be seen. When there is an accumulation of ACh at autonomic ganglia this causes overstimulation of nicotinic expression in the sympathetic system. Symptoms associated with this are hypertension, and hypoglycemia. Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur. Certain reproductive effects in fertility, growth, and development for males and females have been linked specifically to organophosphate pesticide exposure. Most of the research on reproductive effects has been conducted on farmers working with pesticides and insecticdes in rural areas. In females menstrual cycle disturbances, longer pregnancies, spontaneous abortions, stillbirths, and some developmental effects in offspring have been linked to organophosphate pesticide exposure. Prenatal exposure has been linked to impaired fetal growth and development. Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides.
SymptomsSymptoms of low dose exposure include excessive salivation and eye-watering. Acute dose symptoms include severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Hypertension, hypoglycemia, anxiety, headache, tremor and ataxia may also result.
TreatmentIf the compound has been ingested, rapid gastric lavage should be performed using 5% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of '-oximes' has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB03364
PubChem Compound ID4650
ChEMBL IDCHEMBL8320
ChemSpider ID4489
KEGG IDC00472
UniProt IDNot Available
OMIM ID
ChEBI ID16509
BioCyc IDCPD-8130
CTD IDNot Available
Stitch IDNot Available
PDB IDPLQ
ACToR IDNot Available
Wikipedia LinkQuinone
References
Synthesis ReferenceHarman, Robert E.; Cason, James. The preparation of quinones from p-aminophenols obtained by electrolytic reduction of aromatic nitro compounds. Journal of Organic Chemistry (1952), 17 1058-62.
MSDSLink
General References
  1. Gaskell M, McLuckie KI, Farmer PB: Comparison of the repair of DNA damage induced by the benzene metabolites hydroquinone and p-benzoquinone: a role for hydroquinone in benzene genotoxicity. Carcinogenesis. 2005 Mar;26(3):673-80. Epub 2004 Dec 23. [15618234 ]
  2. Fabiani R, De Bartolomeo A, Morozzi G: Involvement of oxygen free radicals in the serum-mediated increase of benzoquinone genotoxicity. Environ Mol Mutagen. 2005 Oct;46(3):156-63. [15920754 ]
  3. Bello RI, Gomez-Diaz C, Navarro F, Alcain FJ, Villalba JM: Expression of NAD(P)H:quinone oxidoreductase 1 in HeLa cells: role of hydrogen peroxide and growth phase. J Biol Chem. 2001 Nov 30;276(48):44379-84. Epub 2001 Sep 20. [11567026 ]
  4. Park S, Geddes TJ, Javitch JA, Kuhn DM: Dopamine prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide: is nitrotyrosine formation an early step in dopamine neuronal damage? J Biol Chem. 2003 Aug 1;278(31):28736-42. Epub 2003 May 27. [12771134 ]
  5. Siegel D, Ryder J, Ross D: NAD(P)H: quinone oxidoreductase 1 expression in human bone marrow endothelial cells. Toxicol Lett. 2001 Dec 15;125(1-3):93-8. [11701227 ]
  6. Roberg K, Johansson U, Ollinger K: Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med. 1999 Dec;27(11-12):1228-37. [10641715 ]
  7. Kwasnicka-Crawford DA, Vincent SR: Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity. Biochem Biophys Res Commun. 2005 Oct 21;336(2):565-71. [16140270 ]
  8. Yamazaki H, Shibata A, Suzuki M, Nakajima M, Shimada N, Guengerich FP, Yokoi T: Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P-450 2C8 and P-450 3A4 in human liver microsomes. Drug Metab Dispos. 1999 Nov;27(11):1260-6. [10534310 ]
  9. He K, Woolf TF, Kindt EK, Fielder AE, Talaat RE: Troglitazone quinone formation catalyzed by human and rat CYP3A: an atypical CYP oxidation reaction. Biochem Pharmacol. 2001 Jul 15;62(2):191-8. [11389877 ]
  10. Soucek P: Cytochrome P450 destruction by quinones: comparison of effects in rat and human liver microsomes. Chem Biol Interact. 1999 Aug 1;121(3):223-36. [10462055 ]
  11. Xu L, Eiseman JL, Egorin MJ, D'Argenio DZ: Physiologically-based pharmacokinetics and molecular pharmacodynamics of 17-(allylamino)-17-demethoxygeldanamycin and its active metabolite in tumor-bearing mice. J Pharmacokinet Pharmacodyn. 2003 Jun;30(3):185-219. [14571691 ]
  12. He K, Talaat RE, Woolf TF: Incorporation of an oxygen from water into troglitazone quinone by cytochrome P450 and myeloperoxidase. Drug Metab Dispos. 2004 Apr;32(4):442-6. [15039298 ]
  13. Toyota T, Ueno Y: [Clinical effect and side effect of troglitazone]. Nihon Rinsho. 2000 Feb;58(2):376-82. [10707561 ]
  14. Smith MT: The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ Health Perspect. 1996 Dec;104 Suppl 6:1219-25. [9118896 ]
  15. Terman A, Neuzil J, Kagedal K, Ollinger K, Brunk UT: Decreased apoptotic response of inclusion-cell disease fibroblasts: a consequence of lysosomal enzyme missorting? Exp Cell Res. 2002 Mar 10;274(1):9-15. [11855852 ]
  16. Mu D, Medzihradszky KF, Adams GW, Mayer P, Hines WM, Burlingame AL, Smith AJ, Cai D, Klinman JP: Primary structures for a mammalian cellular and serum copper amine oxidase. J Biol Chem. 1994 Apr 1;269(13):9926-32. [8144587 ]
  17. Hasegawa T, Matsuzaki M, Takeda A, Kikuchi A, Furukawa K, Shibahara S, Itoyama Y: Increased dopamine and its metabolites in SH-SY5Y neuroblastoma cells that express tyrosinase. J Neurochem. 2003 Oct;87(2):470-5. [14511124 ]
  18. Lin YS, Vermeulen R, Tsai CH, Waidyanatha S, Lan Q, Rothman N, Smith MT, Zhang L, Shen M, Li G, Yin S, Kim S, Rappaport SM: Albumin adducts of electrophilic benzene metabolites in benzene-exposed and control workers. Environ Health Perspect. 2007 Jan;115(1):28-34. [17366815 ]
  19. Halliwell, Barry B., and Henrik E. Poulsen (2006). Cigarette Smoke and Oxidative Stress. Berlin: Springer. [ISBN: 978-3-540-31410-3 (Print) 978-3-540-32232-0 (Online)]
  20. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Serine hydrolase activity
Specific Function:
Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. Role in neuronal apoptosis.
Gene Name:
ACHE
Uniprot ID:
P22303
Molecular Weight:
67795.525 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory0.955 uMNot AvailableBindingDB 22774
References
  1. Wadkins RM, Hyatt JL, Wei X, Yoon KJ, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM: Identification and characterization of novel benzil (diphenylethane-1,2-dione) analogues as inhibitors of mammalian carboxylesterases. J Med Chem. 2005 Apr 21;48(8):2906-15. [15828829 ]
General Function:
Endopeptidase activity
Specific Function:
Thiol protease that cleaves IL-1 beta between an Asp and an Ala, releasing the mature cytokine which is involved in a variety of inflammatory processes. Important for defense against pathogens. Cleaves and activates sterol regulatory element binding proteins (SREBPs). Can also promote apoptosis.
Gene Name:
CASP1
Uniprot ID:
P29466
Molecular Weight:
45158.215 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC503 uMNot AvailableBindingDB 22774
References
  1. Huang FC, Chan WK, Moriarty KJ, Zhang DC, Chang MN, He W, Yu KT, Zilberstein A: Novel cytokine release inhibitors. Part I: Triterpenes. Bioorg Med Chem Lett. 1998 Jul 21;8(14):1883-6. [9873452 ]
General Function:
Methylumbelliferyl-acetate deacetylase activity
Specific Function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Shows high catalytic efficiency for hydrolysis of cocaine, 4-methylumbelliferyl acetate, heroin and 6-monoacetylmorphine.
Gene Name:
CES2
Uniprot ID:
O00748
Molecular Weight:
61806.41 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory>100 uMNot AvailableBindingDB 22774
References
  1. Wadkins RM, Hyatt JL, Wei X, Yoon KJ, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM: Identification and characterization of novel benzil (diphenylethane-1,2-dione) analogues as inhibitors of mammalian carboxylesterases. J Med Chem. 2005 Apr 21;48(8):2906-15. [15828829 ]
General Function:
Zinc ion binding
Specific Function:
DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase-dependent and -independent mechanisms. Exhibits potent antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels of mutations in the proviral genome, along with a deamination-independent mechanism that works prior to the proviral integration, together exert efficient antiretroviral effects in infected target cells. Selectively targets single-stranded DNA and does not deaminate double-stranded DNA or single-or double-stranded RNA. Exhibits antiviral activity also against simian immunodeficiency viruses (SIVs), hepatitis B virus (HBV), equine infectious anemia virus (EIAV), xenotropic MuLV-related virus (XMRV) and simian foamy virus (SFV). May inhibit the mobility of LTR and non-LTR retrotransposons.
Gene Name:
APOBEC3G
Uniprot ID:
Q9HC16
Molecular Weight:
46407.605 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC5036.1 uMNot AvailableBindingDB 22774
References
  1. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007 Jan;35(Database issue):D198-201. Epub 2006 Dec 1. [17145705 ]
General Function:
Ubiquitin binding
Specific Function:
Control of topological states of DNA by transient breakage and subsequent rejoining of DNA strands. Topoisomerase II makes double-strand breaks. Essential during mitosis and meiosis for proper segregation of daughter chromosomes. May play a role in regulating the period length of ARNTL/BMAL1 transcriptional oscillation (By similarity).
Gene Name:
TOP2A
Uniprot ID:
P11388
Molecular Weight:
174383.88 Da
References
  1. Gurbani D, Kukshal V, Laubenthal J, Kumar A, Pandey A, Tripathi S, Arora A, Jain SK, Ramachandran R, Anderson D, Dhawan A: Mechanism of inhibition of the ATPase domain of human topoisomerase IIalpha by 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, and 9,10-phenanthroquinone. Toxicol Sci. 2012 Apr;126(2):372-90. doi: 10.1093/toxsci/kfr345. Epub 2012 Jan 4. [22218491 ]
General Function:
Not Available
Specific Function:
Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis.
Gene Name:
FBF1
Uniprot ID:
Q8TES7
Molecular Weight:
125445.19 Da
References
  1. Lin YS, Vermeulen R, Tsai CH, Waidyanatha S, Lan Q, Rothman N, Smith MT, Zhang L, Shen M, Li G, Yin S, Kim S, Rappaport SM: Albumin adducts of electrophilic benzene metabolites in benzene-exposed and control workers. Environ Health Perspect. 2007 Jan;115(1):28-34. [17366815 ]
General Function:
Triglyceride lipase activity
Specific Function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester. Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine. Catalyzes the transesterification of cocaine to form cocaethylene. Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate.
Gene Name:
CES1
Uniprot ID:
P23141
Molecular Weight:
62520.62 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory>100 uMNot AvailableBindingDB 22774
References
  1. Wadkins RM, Hyatt JL, Wei X, Yoon KJ, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM: Identification and characterization of novel benzil (diphenylethane-1,2-dione) analogues as inhibitors of mammalian carboxylesterases. J Med Chem. 2005 Apr 21;48(8):2906-15. [15828829 ]
General Function:
Protein tyrosine phosphatase activity
Specific Function:
Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Directly dephosphorylates CDK1 and stimulates its kinase activity. The three isoforms seem to have a different level of activity.
Gene Name:
CDC25B
Uniprot ID:
P30305
Molecular Weight:
64986.745 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>50 uMNot AvailableBindingDB 22774
References
  1. Cao S, Murphy BT, Foster C, Lazo JS, Kingston DG: Bioactivities of simplified adociaquinone B and naphthoquinone derivatives against Cdc25B, MKP-1, and MKP-3 phosphatases. Bioorg Med Chem. 2009 Mar 15;17(6):2276-81. doi: 10.1016/j.bmc.2008.10.090. Epub 2008 Nov 8. [19028102 ]
General Function:
Vascular endothelial growth factor-activated receptor activity
Specific Function:
Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC.
Gene Name:
KDR
Uniprot ID:
P35968
Molecular Weight:
151525.555 Da
References
  1. Wissner A, Floyd MB, Johnson BD, Fraser H, Ingalls C, Nittoli T, Dushin RG, Discafani C, Nilakantan R, Marini J, Ravi M, Cheung K, Tan X, Musto S, Annable T, Siegel MM, Loganzo F: 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones as covalent-binding, irreversible inhibitors of the kinase domain of vascular endothelial growth factor receptor-2. J Med Chem. 2005 Dec 1;48(24):7560-81. [16302797 ]