Record Information
Version2.0
Creation Date2014-08-29 06:34:51 UTC
Update Date2014-12-24 20:26:47 UTC
Accession NumberT3D4362
Identification
Common NameL-Asparagine
ClassSmall Molecule
DescriptionAsparagine (Asn) is one of the 20 most common natural amino acids on Earth. It has carboxamide as the side chain's functional group. It is considered a non-essential amino acid. Asparagine is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. The enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as capping the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. glutamines have an extra methylene group, have more conformational entropy and thus are less useful in this regard. Asparagine also provides key sites for N-linked glycosylation, modification of the protein chain with the addition of carbohydrate chains. A reaction between asparagine and reducing sugars or reactive carbonyls produces acrylamide (acrylic amide) in food when heated to sufficient temperature, i.e. baking. These occur primarily in baked goods such as french fries, potato chips, and roasted coffee. Asparagine was first isolated in 1806 from asparagus juice, in which it is abundant--hence its name--becoming the first amino acid to be isolated. The smell observed in the urine of some individuals after their consumption of asparagus is attributed to a byproduct of the metabolic breakdown of asparagine, asparagine-amino-succinic-acid monoamide. (However, some scientists disagree and implicate other substances in the smell, especially methanethiol). It is biosynthesized from aspartic acid and ammonia by asparagine synthetase.
Compound Type
  • Amine
  • Animal Toxin
  • Dietary Supplement
  • Drug
  • Food Toxin
  • Metabolite
  • Micronutrient
  • Natural Compound
  • Non-Essential Amino Acid
  • Nutraceutical
  • Organic Compound
  • Supplement
Chemical Structure
Thumb
Synonyms
Synonym
(-)-Asparagine
(2S)-2,4-diamino-4-oxobutanoic acid
(2S)-2-amino-3-carbamoylpropanoic acid
(S)-2,4-Diamino-4-oxobutanoate
(S)-2,4-Diamino-4-oxobutanoic acid
(S)-2-amino-3-carbamoylpropanoic acid
(S)-Asparagine
2-Aminosuccinamate
2-Aminosuccinamic acid
a-Aminosuccinamate
a-Aminosuccinamic acid
Agedoite
alpha Amminosuccinamate
alpha Amminosuccinamic acid
alpha-Aminosuccinamate
alpha-Aminosuccinamic acid
Altheine
Asn
Asparagine
Asparagine acid
Asparamide
Aspartamate
Aspartamic acid
Aspartic acid amide
Aspartic acid b-amide
Aspartic acid beta amide
B2,4-(S)-diamino-4-oxo-utanoate
B2,4-(S)-diamino-4-oxo-utanoic acid
Crystal VI
L-2,4-Diamino-4-oxobutanoate
L-2,4-Diamino-4-oxobutanoic acid
L-2-aminosuccinamic acid
L-Asparagin
L-Aspartamine
L-aspartic acid beta-amide
L-aspartic acid β-amide
L-b-Asparagine
L-beta-Asparagine
N
α-aminosuccinamic acid
Chemical FormulaC4H8N2O3
Average Molecular Mass132.118 g/mol
Monoisotopic Mass132.053 g/mol
CAS Registry Number70-47-3
IUPAC Name(2S)-2-amino-3-carbamoylpropanoic acid
Traditional NameL-asparagine
SMILES[H][C@](N)(CC(O)=N)C(O)=O
InChI IdentifierInChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9)/t2-/m0/s1
InChI KeyInChIKey=DCXYFEDJOCDNAF-REOHCLBHSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as asparagine and derivatives. Asparagine and derivatives are compounds containing asparagine or a derivative thereof resulting from reaction of asparagine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentAsparagine and derivatives
Alternative Parents
Substituents
  • Asparagine or derivatives
  • Alpha-amino acid
  • L-alpha-amino acid
  • Fatty amide
  • Fatty acyl
  • Fatty acid
  • Carboxamide group
  • Amino acid
  • Primary carboxylic acid amide
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Organic nitrogen compound
  • Primary amine
  • Organooxygen compound
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Primary aliphatic amine
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginEndogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
  • Mitochondria
Biofluid LocationsNot Available
Tissue Locations
  • All Tissues
  • Prostate
Pathways
NameSMPDB LinkKEGG Link
Ammonia RecyclingSMP00009 map00910
Aspartate MetabolismSMP00067 map00250
Transcription/TranslationSMP00019 Not Available
Hartnup DisorderSMP00189 Not Available
Applications
Biological Roles
Chemical RolesNot Available
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point234-235°C
Boiling PointNot Available
Solubility2.94E+004 mg/L (at 25°C)
LogP-3.82
Predicted Properties
PropertyValueSource
Water Solubility168 g/LALOGPS
logP-3.4ALOGPS
logP-4.3ChemAxon
logS0.1ALOGPS
pKa (Strongest Acidic)2ChemAxon
pKa (Strongest Basic)8.43ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area106.41 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity28.35 m³·mol⁻¹ChemAxon
Polarizability11.68 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-0159-0910000000-bedf57998656ab5ebc162014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-0159-0910000000-4979c4d028d2dc9312632014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-0159-0910000000-b7ea3fef61f3940cbdda2014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS)splash10-00di-9710000000-6d0afcbcc003347e598e2014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-0uxr-0910000000-2be567239bd3229b1ca12014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-02t9-0790000000-b8141f48cbebb90f683e2014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-02t9-1790000000-1d12ed9b4fb2799da7662014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-014u-0961000000-65a5c0999f17110c99392014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-00kr-0940000000-0e0e5c7bdbac5ea0e49e2014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (3 TMS)splash10-00lr-1920000000-7864dbb1f685e64dd1cf2014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-000i-1940000000-964ea25da2789805985a2014-06-16View Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-00lr-0930000000-79a089d9875e092dd7f22017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0910000000-bedf57998656ab5ebc162017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0910000000-4979c4d028d2dc9312632017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0159-0910000000-b7ea3fef61f3940cbdda2017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-QQ (Non-derivatized)splash10-00di-4931100000-17f149310ce3a0f748d12017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-00di-9710000000-6d0afcbcc003347e598e2017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0uxr-0910000000-2be567239bd3229b1ca12017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-02t9-0790000000-b8141f48cbebb90f683e2017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-02t9-1790000000-1d12ed9b4fb2799da7662017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-014u-0961000000-65a5c0999f17110c99392017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-00kr-0940000000-0e0e5c7bdbac5ea0e49e2017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-00lr-1920000000-7864dbb1f685e64dd1cf2017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-000i-1940000000-964ea25da2789805985a2017-09-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-000f-9100000000-5881591331bd059b7e7d2016-09-22View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0080-9400000000-e5c7e19f427eea6d71b02012-07-24View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-00di-9000000000-afc1214100db1168b0952012-07-24View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-00dl-9000000000-57e977cd87e9a86d482b2012-07-24View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-6fb96f5aa291359dba292012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-76f11e6fe5657c35d15f2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-e944486273dbfde4cae42012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-27ad91a86be0c4d86c3c2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-b8b7a3431b66246ad6132012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-03fa294ec740e189dd992012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-000i-9000000000-cee2081406fc25ab61692012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positivesplash10-001i-0900000000-cd79afa0c27f65e54adc2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-01q9-0943200000-5a24322ba0ce2f4101552012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-03di-0900000000-fc3086cc1bb0c06a4c112012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-03di-3900000000-2d74d8232e7523f3b1c92012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0900000000-fa61c6fa9a87ce4905bb2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-01q9-0942200000-757da8b3406485c997b02012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-014i-9000000000-eac18512f2d22ab7a7ef2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-03di-0900000000-8df6d5b6cf94bf081c892012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-001i-0900000000-18079004a95c252da2082012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-001i-0900000000-e6b1f9b4982e6cdc863d2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-03di-5900000000-7b9c09b3b6de28972f972012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-00dl-9100000000-2ea95ead344d62e230a42012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-0006-9000000000-defacc365589bc4437d72012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-0006-9000000000-fd60db4d5e35794c45ae2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positivesplash10-001i-3900000000-fd0f1034b5c1e40435c02012-08-31View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Not Available2012-12-04View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, H2O, experimental)Not Available2012-12-04View Spectrum
1D NMR1H NMR Spectrum (1D, D2O, experimental)Not Available2016-10-22View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)Not Available2021-09-29View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, experimental)Not Available2021-10-10View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)Not Available2021-10-10View Spectrum
2D NMR[1H, 1H]-TOCSY. Unexported temporarily by An Chi on Oct 15, 2021 until json or nmrML file is generated. 2D NMR Spectrum (experimental)Not Available2012-12-04View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)Not Available2012-12-05View Spectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityAsparagine, a non-essential amino acid is important in the metabolism of toxic ammonia in the body through the action of asparagine synthase which attaches ammonia to aspartic acid in an amidation reaction. Asparagine is also used as a structural component in many proteins.
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesUsed for nutritional supplementation, also for treating dietary shortage or imbalance.
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00174
HMDB IDHMDB00168
PubChem Compound ID6267
ChEMBL IDCHEMBL58832
ChemSpider ID6031
KEGG IDC00152
UniProt IDNot Available
OMIM ID
ChEBI ID17196
BioCyc IDASN
CTD IDNot Available
Stitch IDNot Available
PDB IDASN
ACToR IDNot Available
Wikipedia LinkAsn
References
Synthesis Reference

Sang C. Park, “Pharmaceutical preparation containing L-aspartate or L-asparagine for preventing ethanol toxicity, and process for preparation thereof.” U.S. Patent US5389359, issued November, 1991.

MSDSLink
General References
  1. Starczynowski DT, Reynolds JG, Gilmore TD: Mutations of tumor necrosis factor alpha-responsive serine residues within the C-terminal transactivation domain of human transcription factor REL enhance its in vitro transforming ability. Oncogene. 2005 Nov 10;24(49):7355-68. [16027730 ]
  2. Fischer D, Schroers A, Blumcke I, Urbach H, Zerres K, Mortier W, Vorgerd M, Schroder R: Consequences of a novel caveolin-3 mutation in a large German family. Ann Neurol. 2003 Feb;53(2):233-41. [12557291 ]
  3. Filho JC, Bergstrom J, Stehle P, Furst P: Simultaneous measurements of free amino acid patterns of plasma, muscle and erythrocytes in healthy human subjects. Clin Nutr. 1997 Dec;16(6):299-305. [16844612 ]
  4. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [15911239 ]
  5. Sun S, Han J, Ralph WM Jr, Chandrasekaran A, Liu K, Auborn KJ, Carter TH: Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones. 2004 Mar;9(1):76-87. [15270080 ]
  6. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [12297216 ]
  7. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [14992292 ]
  8. Takamatsu S, Inoue N, Katsumata T, Nakamura K, Fujibayashi Y, Takeuchi M: The relationship between the branch-forming glycosyltransferases and cell surface sugar chain structures. Biochemistry. 2005 Apr 26;44(16):6343-9. [15835923 ]
  9. Rip JW, Coulter-Mackie MB, Rupar CA, Gordon BA: Purification and structure of human liver aspartylglucosaminidase. Biochem J. 1992 Dec 15;288 ( Pt 3):1005-10. [1281977 ]
  10. Chiara F, Goumans MJ, Forsberg H, Ahgren A, Rasola A, Aspenstrom P, Wernstedt C, Hellberg C, Heldin CH, Heuchel R: A gain of function mutation in the activation loop of platelet-derived growth factor beta-receptor deregulates its kinase activity. J Biol Chem. 2004 Oct 8;279(41):42516-27. Epub 2004 Jul 28. [15284236 ]
  11. Xu L, Wang Y, Gillespie D, Meissner G: Two rings of negative charges in the cytosolic vestibule of type-1 ryanodine receptor modulate ion fluxes. Biophys J. 2006 Jan 15;90(2):443-53. Epub 2005 Oct 20. [16239337 ]
  12. Poon CJ, Plaas AH, Keene DR, McQuillan DJ, Last K, Fosang AJ: N-linked keratan sulfate in the aggrecan interglobular domain potentiates aggrecanase activity. J Biol Chem. 2005 Jun 24;280(25):23615-21. Epub 2005 Apr 22. [15849197 ]
  13. Ahlman B, Andersson K, Leijonmarck CE, Ljungqvist O, Hedenborg L, Wernerman J: Short-term starvation alters the free amino acid content of the human intestinal mucosa. Clin Sci (Lond). 1994 Jun;86(6):653-62. [7914846 ]
  14. Avramis VI, Panosyan EH: Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet. 2005;44(4):367-93. [15828851 ]
  15. Mohrmann K, van Eijndhoven MA, Schinkel AH, Schellens JH: Absence of N-linked glycosylation does not affect plasma membrane localization of breast cancer resistance protein (BCRP/ABCG2). Cancer Chemother Pharmacol. 2005 Oct;56(4):344-50. Epub 2005 May 5. [15875186 ]
  16. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [6198473 ]
  17. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [19212411 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Protein homodimerization activity
Specific Function:
Not Available
Gene Name:
ASNS
Uniprot ID:
P08243
Molecular Weight:
64369.39 Da
References
  1. Tesson AR, Soper TS, Ciustea M, Richards NG: Revisiting the steady state kinetic mechanism of glutamine-dependent asparagine synthetase from Escherichia coli. Arch Biochem Biophys. 2003 May 1;413(1):23-31. [12706338 ]
  2. Fresquet V, Thoden JB, Holden HM, Raushel FM: Kinetic mechanism of asparagine synthetase from Vibrio cholerae. Bioorg Chem. 2004 Apr;32(2):63-75. [14990305 ]
  3. Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C: Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 2004 Nov;45(11):1681-93. [15574844 ]
  4. Al Sarraj J, Vinson C, Thiel G: Regulation of asparagine synthetase gene transcription by the basic region leucine zipper transcription factors ATF5 and CHOP. Biol Chem. 2005 Sep;386(9):873-9. [16164412 ]
  5. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D: Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest. 2007 Apr;117(4):1049-57. Epub 2007 Mar 22. [17380207 ]
General Function:
Nucleic acid binding
Specific Function:
Not Available
Gene Name:
NARS
Uniprot ID:
O43776
Molecular Weight:
62942.425 Da
References
  1. Iwasaki W, Sekine S, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S: Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. J Mol Biol. 2006 Jul 7;360(2):329-42. Epub 2006 May 15. [16753178 ]
  2. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D: Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest. 2007 Apr;117(4):1049-57. Epub 2007 Mar 22. [17380207 ]
General Function:
Beta-aspartyl-peptidase activity
Specific Function:
Has both L-asparaginase and beta-aspartyl peptidase activity. May be involved in the production of L-aspartate, which can act as an excitatory neurotransmitter in some brain regions. Is highly active with L-Asp beta-methyl ester. Besides, has catalytic activity toward beta-aspartyl dipeptides and their methyl esters, including beta-L-Asp-L-Phe, beta-L-Asp-L-Phe methyl ester (aspartame), beta-L-Asp-L-Ala, beta-L-Asp-L-Leu and beta-L-Asp-L-Lys. Does not have aspartylglucosaminidase activity and is inactive toward GlcNAc-L-Asn. Likewise, has no activity toward glutamine.
Gene Name:
ASRGL1
Uniprot ID:
Q7L266
Molecular Weight:
32054.325 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Virus receptor activity
Specific Function:
Sodium-dependent amino acids transporter that has a broad substrate specificity, with a preference for zwitterionic amino acids. It accepts as substrates all neutral amino acids, including glutamine, asparagine, and branched-chain and aromatic amino acids, and excludes methylated, anionic, and cationic amino acids. May also be activated by insulin. Through binding of the fusogenic protein syncytin-1/ERVW-1 may mediate trophoblasts syncytialization, the spontaneous fusion of their plasma membranes, an essential process in placental development (PubMed:10708449, PubMed:23492904). Acts as a cell surface receptor for feline endogenous virus RD114, baboon M7 endogenous virus and type D simian retroviruses (PubMed:10051606, PubMed:10196349).
Gene Name:
SLC1A5
Uniprot ID:
Q15758
Molecular Weight:
56597.64 Da
References
  1. Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB: Functional and molecular analysis of D-serine transport in retinal Muller cells. Exp Eye Res. 2007 Jan;84(1):191-9. Epub 2006 Nov 13. [17094966 ]
  2. Oppedisano F, Pochini L, Galluccio M, Cavarelli M, Indiveri C: Reconstitution into liposomes of the glutamine/amino acid transporter from renal cell plasma membrane: functional characterization, kinetics and activation by nucleotides. Biochim Biophys Acta. 2004 Dec 15;1667(2):122-31. [15581847 ]
General Function:
Nucleic acid binding
Specific Function:
Not Available
Gene Name:
NARS2
Uniprot ID:
Q96I59
Molecular Weight:
54089.64 Da
References
  1. Iwasaki W, Sekine S, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S: Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. J Mol Biol. 2006 Jul 7;360(2):329-42. Epub 2006 May 15. [16753178 ]
  2. Roy H, Becker HD, Reinbolt J, Kern D: When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9837-42. Epub 2003 Jul 21. [12874385 ]
General Function:
Symporter activity
Specific Function:
Sodium-dependent amino acid/proton antiporter. Mediates electrogenic cotransport of glutamine and sodium ions in exchange for protons. Also recognizes histidine, asparagine and alanine. May mediate amino acid transport in either direction under physiological conditions. May play a role in nitrogen metabolism and synaptic transmission.
Gene Name:
SLC38A3
Uniprot ID:
Q99624
Molecular Weight:
55772.405 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]