Record Information |
---|
Version | 2.0 |
---|
Creation Date | 2014-08-29 06:27:43 UTC |
---|
Update Date | 2018-03-21 17:46:17 UTC |
---|
Accession Number | T3D4328 |
---|
Identification |
---|
Common Name | L-Methionine |
---|
Class | Small Molecule |
---|
Description | Methionine is an essential amino acid (there are 9 essential amino acids) required for normal growth and development of humans, other mammals, and avian species. In addition to being a substrate for protein synthesis, it is an intermediate in transmethylation reactions, serving as the major methyl group donor in vivo, including the methyl groups for DNA and RNA intermediates. Methionine is a methyl acceptor for 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthase), the only reaction that allows for the recycling of this form of folate, and is also a methyl acceptor for the catabolism of betaine. Methionine is the metabolic precursor for cysteine. Only the sulfur atom from methionine is transferred to cysteine; the carbon skeleton of cysteine is donated by serine (PMID: 16702340). There is a general consensus concerning normal sulfur amino acid (SAA) requirements. WHO recommendations amount to 13 mg/kg per 24 h in healthy adults. This amount is roughly doubled in artificial nutrition regimens. In disease or after trauma, requirements may be altered for methionine, cysteine, and taurine. Although in specific cases of congenital enzyme deficiency, prematurity, or diminished liver function, hypermethioninemia or hyperhomocysteinemia may occur, SAA supplementation can be considered safe in amounts exceeding 2-3 times the minimum recommended daily intake. Apart from some very specific indications (e.g. acetaminophen poisoning) the usefulness of SAA supplementation is not yet established (PMID: 16702341). Methionine is known to exacerbate psychopathological symptoms in schizophrenic patients, but there is no evidence of similar effects in healthy subjects. The role of methionine as a precursor of homocysteine is the most notable cause for concern. Acute doses of methionine can lead to acute increases in plasma homocysteine, which can be used as an index of the susceptibility to cardiovascular disease. Sufficiently high doses of methionine can actually result in death. Longer-term studies in adults have indicated no adverse consequences of moderate fluctuations in dietary methionine intake, but intakes higher than 5 times the normal amount resulted in elevated homocysteine levels. These effects of methionine on homocysteine and vascular function are moderated by supplements of vitamins B-6, B-12, C, and folic acid (PMID: 16702346). When present in sufficiently high levels, methionine can act as an atherogen and a metabotoxin. An atherogen is a compound that when present at chronically high levels causes atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methionine are associated with at least ten inborn errors of metabolism, including cystathionine beta-synthase deficiency, glycine N-methyltransferase deficiency, homocystinuria, tyrosinemia, galactosemia, homocystinuria-megaloblastic anemia due to defects in cobalamin metabolism, methionine adenosyltransferase deficiency, methylenetetrahydrofolate reductase deficiency, and S-adenosylhomocysteine (SAH) hydrolase deficiency. Chronically elevated levels of methionine in infants can lead to intellectual disability and other neurological problems, delays in motor skills, sluggishness, muscle weakness, and liver problems. Many individuals with these metabolic disorders tend to develop cardiovascular disease later in life. Studies on feeding rodents high levels of methionine have shown that methionine promotes atherosclerotic plaques independently of homocysteine levels (PMID: 26647293). A similar study in Finnish men showed the same effect (PMID: 16487911). See less | Methionine is an essential amino acid (there are 9 essential amino acids) required for normal growth and development of humans, other mammals, and avian species. In addition to being a substrate for protein synthesis, it is an intermediate in transmethylation reactions, serving as the major methyl group donor in vivo, including the methyl groups for DNA and RNA intermediates. Methionine is a methyl acceptor for 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthase), the only reaction that allows for the recycling of this form of folate, and is also a methyl acceptor for the catabolism of betaine. Methionine is the metabolic precursor for cysteine. Only the sulfur atom from methionine is transferred to cysteine; the carbon skeleton of cysteine is donated by serine (PMID: 16702340). There is a general consensus concerning normal sulfur amino acid (SAA) requirements. WHO recommendations amount to 13 mg/kg per 24 h in healthy adults. This amount is roughly doubled in artificial nutrition regimens. In disease or after trauma, requirements may be altered for methionine, cysteine, and taurine. Although in specific cases of congenital enzyme deficiency, prematurity, or diminished liver function, hypermethioninemia or hyperhomocysteinemia may occur, SAA supplementation can be considered safe in amounts exceeding 2-3 times the minimum recommended daily intake. Apart from some very specific indications (e.g. acetaminophen poisoning) the usefulness of SAA supplementation is not yet established (PMID: 16702341). Methionine is known to exacerbate psychopathological symptoms in schizophrenic patients, but there is no evidence of similar effects in healthy subjects. The role of methionine as a precursor of homocysteine is the most notable cause for concern. Acute doses of methionine can lead to acute increases in plasma homocysteine, which can be used as an index of the susceptibility to cardiovascular disease. Sufficiently high doses of methioni ...Read more |
---|
Compound Type | - Amine
- Amino Acid, Essential
- Animal Toxin
- Dietary Supplement
- Drug
- Ether
- Food Toxin
- Household Toxin
- Metabolite
- Micronutrient
- Natural Compound
- Nutraceutical
- Organic Compound
- Supplement
|
---|
Chemical Structure | |
---|
Synonyms | |
---|
Chemical Formula | C5H11NO2S |
---|
Average Molecular Mass | 149.211 g/mol |
---|
Monoisotopic Mass | 149.051 g/mol |
---|
CAS Registry Number | 63-68-3 |
---|
IUPAC Name | (2S)-2-amino-4-(methylsulfanyl)butanoic acid |
---|
Traditional Name | L-methionine |
---|
SMILES | [H][C@](N)(CCSC)C(O)=O |
---|
InChI Identifier | InChI=1S/C5H11NO2S/c1-9-3-2-4(6)5(7)8/h4H,2-3,6H2,1H3,(H,7,8)/t4-/m0/s1 |
---|
InChI Key | InChIKey=FFEARJCKVFRZRR-BYPYZUCNSA-N |
---|
Chemical Taxonomy |
---|
Description | belongs to the class of organic compounds known as methionine and derivatives. Methionine and derivatives are compounds containing methionine or a derivative thereof resulting from reaction of methionine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Methionine and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Methionine or derivatives
- Alpha-amino acid
- L-alpha-amino acid
- Thia fatty acid
- Fatty acid
- Fatty acyl
- Amino acid
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Thioether
- Sulfenyl compound
- Dialkylthioether
- Amine
- Organic oxygen compound
- Primary amine
- Organosulfur compound
- Organooxygen compound
- Organonitrogen compound
- Organic nitrogen compound
- Primary aliphatic amine
- Carbonyl group
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Biological Properties |
---|
Status | Detected and Not Quantified |
---|
Origin | Endogenous |
---|
Cellular Locations | |
---|
Biofluid Locations | Not Available |
---|
Tissue Locations | - Fibroblasts
- Kidney
- Liver
- Muscle
- Pancreas
- Prostate
- Spleen
|
---|
Pathways | Name | SMPDB Link | KEGG Link |
---|
Betaine Metabolism | SMP00123 | map00260 | Glycine and Serine Metabolism | SMP00004 | map00260 | Methionine Metabolism | SMP00033 | map00270 | Spermidine and Spermine Biosynthesis | SMP00445 | Not Available | Transcription/Translation | SMP00019 | Not Available | Cystathionine Beta-Synthase Deficiency | SMP00177 | Not Available | Glycine N-methyltransferase Deficiency | SMP00222 | Not Available | Homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblG complementation type | SMP00570 | Not Available | Hypermethioninemia | SMP00341 | Not Available | Methionine Adenosyltransferase Deficiency | SMP00221 | Not Available | Methylenetetrahydrofolate Reductase Deficiency (MTHFRD) | SMP00340 | Not Available | S-Adenosylhomocysteine (SAH) Hydrolase Deficiency | SMP00214 | Not Available |
|
---|
Applications | |
---|
Biological Roles | |
---|
Chemical Roles | Not Available |
---|
Physical Properties |
---|
State | Solid |
---|
Appearance | White powder. |
---|
Experimental Properties | Property | Value |
---|
Melting Point | 283 dec°C | Boiling Point | Not Available | Solubility | 5.66E+004 mg/L (at 25°C) | LogP | -1.87 |
|
---|
Predicted Properties | |
---|
Spectra |
---|
Spectra | Spectrum Type | Description | Splash Key | Deposition Date | View |
---|
GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-004i-0920000000-945c85aa7c9f5eb2dfbb | 2014-06-16 | View Spectrum | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized) | splash10-004i-0910000000-b837ee0f4413856560f1 | 2014-06-16 | View Spectrum | GC-MS | GC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-00b9-7910000000-5a1558fbb2f5e86edc9b | 2014-06-16 | View Spectrum | GC-MS | GC-MS Spectrum - GC-MS (1 TMS) | splash10-0udi-1900000000-1a97567ce4f25c4e8263 | 2014-06-16 | View Spectrum | GC-MS | GC-MS Spectrum - GC-MS (2 TMS) | splash10-004i-0910000000-1b0477118cb20549bf4d | 2014-06-16 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-004i-0920000000-8ffae5d87508e0704903 | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-004i-0920000000-945c85aa7c9f5eb2dfbb | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-004i-0910000000-b837ee0f4413856560f1 | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - GC-EI-QQ (Non-derivatized) | splash10-01bc-2692000000-c6a4af434abaeea2de87 | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - GC-EI-TOF (Non-derivatized) | splash10-00b9-7910000000-5a1558fbb2f5e86edc9b | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - GC-MS (Non-derivatized) | splash10-0udi-1900000000-1a97567ce4f25c4e8263 | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - GC-MS (Non-derivatized) | splash10-004i-0910000000-1b0477118cb20549bf4d | 2017-09-12 | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positive | splash10-0mbd-9200000000-77e5cfb78936ad02d71c | 2016-09-22 | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (1 TMS) - 70eV, Positive | splash10-00di-9510000000-c03dec8575710eed861e | 2017-10-06 | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TMS_1_2) - 70eV, Positive | Not Available | 2021-11-05 | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | 2021-11-05 | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (TBDMS_1_2) - 70eV, Positive | Not Available | 2021-11-05 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated) | splash10-0uea-1900000000-b991859b2c5bed6592a8 | 2012-07-24 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated) | splash10-08fr-9000000000-66855ace60e59837f131 | 2012-07-24 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated) | splash10-08fr-9000000000-56a567791c824c6a9da6 | 2012-07-24 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-0fe0-0900000000-d680295f21b2e2b40366 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-0006-9000000000-062d3540db4db22da836 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-00di-0900000000-84467513e2c9ec1a6851 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-001i-0900000000-88dc2bebb198eea550ef | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-0udi-0920000000-b444ad79abeb16acde43 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-001i-0900000000-6e24a8df417e5f3db58c | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-00di-0900000000-c60ef880eb9a816a274b | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive | splash10-000i-0900000000-a7b7d1a3481c0c691a5b | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negative | splash10-0002-0900000000-9156f088f4cc9eafa892 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negative | splash10-0002-9200000000-f78ba2aab8d5a0e0b135 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negative | splash10-0002-9000000000-e7b819fd2d0ac3862860 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negative | splash10-0002-9000000000-b61396e720381bd5ff85 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negative | splash10-0002-9000000000-b61396e720381bd5ff85 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positive | splash10-0udi-0900000000-c3557cb41fd6fe268819 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positive | splash10-0udi-6900000000-6bf5af2d1c561013948a | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positive | splash10-08fr-9000000000-63c9b1c138f9a27490e5 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positive | splash10-03di-9000000000-e133c47b0efe4992589f | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positive | splash10-03di-9000000000-dee78b4f34f8732fedb0 | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - CE-ESI-TOF (CE-system connected to 6210 Time-of-Flight MS, Agilent) , Positive | splash10-0udi-0900000000-d3f03ff5e8eacc8b6c8e | 2012-08-31 | View Spectrum | LC-MS/MS | LC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positive | splash10-0udi-0900000000-e0dd5ff44b7962f6a2d2 | 2012-08-31 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0udi-2900000000-305916dde72c899993b6 | 2016-09-12 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-0udi-9800000000-47e0a34a2ec02bd762bf | 2016-09-12 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 125 MHz, H2O, experimental) | Not Available | 2012-12-04 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | Not Available | 2012-12-04 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, D2O, experimental) | Not Available | 2016-10-22 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | Not Available | 2021-09-24 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, experimental) | Not Available | 2021-10-10 | View Spectrum | 2D NMR | [1H, 1H]-TOCSY. Unexported temporarily by An Chi on Oct 15, 2021 until json or nmrML file is generated. 2D NMR Spectrum (experimental) | Not Available | 2012-12-04 | View Spectrum | 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | Not Available | 2012-12-05 | View Spectrum |
|
---|
Toxicity Profile |
---|
Route of Exposure | Absorbed from the lumen of the small intestine into the enterocytes by an active transport process. |
---|
Mechanism of Toxicity | The mechanism of the possible anti-hepatotoxic activity of L-methionine is not entirely clear. It is thought that metabolism of high doses of acetaminophen in the liver lead to decreased levels of hepatic glutathione and increased oxidative stress. L-methionine is a precursor to L-cysteine. L-cysteine itself may have antioxidant activity. L-cysteine is also a precursor to the antioxidant glutathione. Antioxidant activity of L-methionine and metabolites of L-methionine appear to account for its possible anti-hepatotoxic activity. Recent research suggests that methionine itself has free-radical scavenging activity by virtue of its sulfur, as well as its chelating ability. |
---|
Metabolism | Hepatic |
---|
Toxicity Values | Not Available |
---|
Lethal Dose | Not Available |
---|
Carcinogenicity (IARC Classification) | No indication of carcinogenicity to humans (not listed by IARC). |
---|
Uses/Sources | Used for protein synthesis including the formation of SAMe, L-homocysteine, L-cysteine, taurine, and sulfate. |
---|
Minimum Risk Level | Not Available |
---|
Health Effects | Chronically high levels of methionine are associated with at least 7 inborn errors of metabolism including: Cystathionine Beta-Synthase Deficiency, Glycine N-methyltransferase Deficiency, Homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, Methionine Adenosyltransferase Deficiency, Methylenetetrahydrofolate reductase deficiency and S-Adenosylhomocysteine (SAH) Hydrolase Deficiency. |
---|
Symptoms | Not Available |
---|
Treatment | Not Available |
---|
Normal Concentrations |
---|
| Not Available |
---|
Abnormal Concentrations |
---|
| Not Available |
---|
External Links |
---|
DrugBank ID | DB00134 |
---|
HMDB ID | HMDB00696 |
---|
PubChem Compound ID | 6137 |
---|
ChEMBL ID | CHEMBL42336 |
---|
ChemSpider ID | 5907 |
---|
KEGG ID | C01733 |
---|
UniProt ID | Not Available |
---|
OMIM ID | |
---|
ChEBI ID | 16643 |
---|
BioCyc ID | MET |
---|
CTD ID | Not Available |
---|
Stitch ID | Not Available |
---|
PDB ID | MET |
---|
ACToR ID | Not Available |
---|
Wikipedia Link | MET |
---|
References |
---|
Synthesis Reference | Clyde Eugene Stauffer, “Process for producing N-acyl-L-methionine.” U.S. Patent US3963573, issued June, 1950. |
---|
MSDS | Link |
---|
General References | - Ball RO, Courtney-Martin G, Pencharz PB: The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans. J Nutr. 2006 Jun;136(6 Suppl):1682S-1693S. [16702340 ]
- van de Poll MC, Dejong CH, Soeters PB: Adequate range for sulfur-containing amino acids and biomarkers for their excess: lessons from enteral and parenteral nutrition. J Nutr. 2006 Jun;136(6 Suppl):1694S-1700S. [16702341 ]
- Garlick PJ: Toxicity of methionine in humans. J Nutr. 2006 Jun;136(6 Suppl):1722S-1725S. [16702346 ]
- Alme B, Bremmelgaard A, Sjovall J, Thomassen P: Analysis of metabolic profiles of bile acids in urine using a lipophilic anion exchanger and computerized gas-liquid chromatorgaphy-mass spectrometry. J Lipid Res. 1977 May;18(3):339-62. [864325 ]
- Sardharwalla IB, Fowler B, Robins AJ, Komrower GM: Detection of heterozygotes for homocystinuria. Study of sulphur-containing amino acids in plasma and urine after L-methionine loading. Arch Dis Child. 1974 Jul;49(7):553-9. [4851308 ]
- Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [15911239 ]
- Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [12297216 ]
- Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [14992292 ]
- Alton KB, Hernandez A, Alvarez N, Patrick JE: High-performance liquid chromatographic determination of N-[2(S)-(mercaptomethyl)-3-(2-methylphenyl)-1-oxopropyl]-L-methionine, the active plasma metabolite of a prodrug atriopeptidase inhibitor (SCH 42495), using a thiol selective (Au/Hg) amperometric detector. J Chromatogr. 1992 Sep 2;579(2):307-17. [1429978 ]
- Fischer JL, Lancia JK, Mathur A, Smith ML: Selenium protection from DNA damage involves a Ref1/p53/Brca1 protein complex. Anticancer Res. 2006 Mar-Apr;26(2A):899-904. [16619485 ]
- Kersemans V, Cornelissen B, Kersemans K, Bauwens M, Achten E, Dierckx RA, Mertens J, Slegers G: In vivo characterization of 123/125I-2-iodo-L-phenylalanine in an R1M rhabdomyosarcoma athymic mouse model as a potential tumor tracer for SPECT. J Nucl Med. 2005 Mar;46(3):532-9. [15750170 ]
- Shoemaker JD, Elliott WH: Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991 Jan 2;562(1-2):125-38. [2026685 ]
- Ditscheid B, Funfstuck R, Busch M, Schubert R, Gerth J, Jahreis G: Effect of L-methionine supplementation on plasma homocysteine and other free amino acids: a placebo-controlled double-blind cross-over study. Eur J Clin Nutr. 2005 Jun;59(6):768-75. [15870821 ]
- Hesse A, Heimbach D: Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol. 1999 Oct;17(5):308-15. [10552150 ]
- Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50. [12834252 ]
- Harth G, Horwitz MA: Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect Immun. 2003 Jan;71(1):456-64. [12496196 ]
- Takasu A, Shimosegawa T, Shimosegawa E, Hatazawa J, Kimura K, Fujita M, Koizumi M, Kanno I, Toyota T: 11C-methionine uptake to the pancreas and its secretion: a positron emission tomography study in humans. Pancreas. 1999 May;18(4):392-8. [10231845 ]
- Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [6198473 ]
- Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [19212411 ]
|
---|
Gene Regulation |
---|
Up-Regulated Genes | Not Available |
---|
Down-Regulated Genes | Not Available |
---|