Record Information
Version2.0
Creation Date2014-08-29 04:47:45 UTC
Update Date2014-12-24 20:26:35 UTC
Accession NumberT3D3964
Identification
Common NameDaidzein
ClassSmall Molecule
DescriptionDaidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (1, 2).
Compound Type
  • Ester
  • Food Toxin
  • Industrial/Workplace Toxin
  • Metabolite
  • Natural Compound
  • Organic Compound
  • Plant Toxin
Chemical Structure
Thumb
Synonyms
Synonym
4',7-Dihydroxy-Isoflavone
4',7-Dihydroxyisoflavone
7,4'-Dihydroxyisoflavone
7-Hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one
Daidzeol
Isoaurostatin
Chemical FormulaC15H10O4
Average Molecular Mass254.238 g/mol
Monoisotopic Mass254.058 g/mol
CAS Registry Number486-66-8
IUPAC Name7-hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one
Traditional Namedaidzein
SMILESOC1=CC=C(C=C1)C1=COC2=C(C=CC(O)=C2)C1=O
InChI IdentifierInChI=1S/C15H10O4/c16-10-3-1-9(2-4-10)13-8-19-14-7-11(17)5-6-12(14)15(13)18/h1-8,16-17H
InChI KeyInChIKey=ZQSIJRDFPHDXIC-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as isoflavones. These are polycyclic compounds containing a 2-isoflavene skeleton which bears a ketone group at the C4 carbon atom.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassIsoflavonoids
Sub ClassIsoflav-2-enes
Direct ParentIsoflavones
Alternative Parents
Substituents
  • Isoflavone
  • Hydroxyisoflavonoid
  • Chromone
  • Benzopyran
  • 1-benzopyran
  • Pyranone
  • Phenol
  • 1-hydroxy-2-unsubstituted benzenoid
  • Benzenoid
  • Monocyclic benzene moiety
  • Pyran
  • Heteroaromatic compound
  • Oxacycle
  • Organoheterocyclic compound
  • Organooxygen compound
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
Applications
Biological Roles
Chemical Roles
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point323°C
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility0.085 g/LALOGPS
logP3.3ALOGPS
logP2.73ChemAxon
logS-3.5ALOGPS
pKa (Strongest Acidic)6.48ChemAxon
pKa (Strongest Basic)-5.3ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area66.76 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity69.7 m³·mol⁻¹ChemAxon
Polarizability25.75 ųChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-001j-1928000000-f956e5fd0e616ef961612014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-000t-1619000000-eb2f87cd7d535b4d04462014-06-16View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-001j-1928000000-f956e5fd0e616ef961612017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-000t-1619000000-eb2f87cd7d535b4d04462017-09-12View Spectrum
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-001j-1927000000-87f11afa0cde5b3531472017-09-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-004i-1390000000-0ff8f0de4d2d339f93572017-07-27View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-00gi-4229000000-71c73470904ad7b680ee2017-10-06View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-0udi-0090000000-20d2c8ade6aac1f46e8a2012-07-25View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0udi-0970000000-a2349152106bd9da12572012-07-25View Spectrum
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0006-9100000000-691c394958fd19d475102012-07-25View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-APPI-QQ (API2000) , Positivesplash10-0f7x-4900000000-5acb56232432597c00e52012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-APPI-QQ (API2000) , Positivesplash10-0pej-1930000000-89bedfb39603a12f3c752012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-APPI-QQ (API2000) , Positivesplash10-0a4i-0490000000-c633d3449d8bb0206fc22012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-APPI-QQ (API2000) , Positivesplash10-0a4i-0190000000-3a5de741e814e47d5cbe2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-APPI-QQ (API2000) , Positivesplash10-0a4i-0090000000-fb84819005f7f65b4fc82012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-APPI-QQ (API2000) , Positivesplash10-0a4i-0090000000-b3ae695d217c756a5f8f2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) 5V, Positivesplash10-0a4i-0090000000-d25bba2f5a1ac12e3d862012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-0udi-0190000000-a9b6c8c416cb482a5dc12012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-0089-1970000000-f6070acf0fd663c4ae6f2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-0uem-1900000000-fa199caebb806e9eb0f92012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-0a4i-0490000000-3defe1cbaf29e0cd2d1f2012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-0a4i-1790000000-2502633932fc662200392012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-0udi-0290000000-56b4c039a64ab57d3e702012-08-31View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) 30V, Negativesplash10-0089-2970000000-f32e85ba94cb6621d4f12012-08-31View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-0090000000-7dcbed418d38de1208952015-04-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-0090000000-c522d590074eabe8c4c42015-04-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-002r-6950000000-7b85969731514bf2d0bc2015-04-24View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0udi-0090000000-388d21c85a84d4e0988a2015-04-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0udi-0090000000-cc8371583b5ba50a4f0d2015-04-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0gbi-3950000000-cb120c48a579b9363f742015-04-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0a4i-0090000000-7dcbed418d38de1208952015-05-26View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-0090000000-c522d590074eabe8c4c42015-05-26View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, 100%_DMSO, experimental)Not Available2012-12-05View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, DMSO, experimental)Not Available2021-10-10View Spectrum
2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, 100%_DMSO, experimental)Not Available2012-12-05View Spectrum
Toxicity Profile
Route of ExposureNot Available
Mechanism of ToxicityNot Available
MetabolismNot Available
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesIsoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut.
Minimum Risk LevelNot Available
Health EffectsNot Available
SymptomsNot Available
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDHMDB03312
PubChem Compound ID5281708
ChEMBL IDCHEMBL8145
ChemSpider ID4445025
KEGG IDC10208
UniProt IDNot Available
OMIM ID
ChEBI ID28197
BioCyc ID2-HYDROXYDAIDZEIN
CTD IDNot Available
Stitch IDNot Available
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceBaker, Wilson; Robinson, Robert; Simpson, N. M. Synthetical experiments in the isoflavone group. VII. Synthesis of daidzein. Journal of the Chemical Society (1933), 274-5.
MSDSLink
General References
  1. Jackman KA, Woodman OL, Sobey CG: Isoflavones, equol and cardiovascular disease: pharmacological and therapeutic insights. Curr Med Chem. 2007;14(26):2824-30. [18045128 ]
  2. Yuan JP, Wang JH, Liu X: Metabolism of dietary soy isoflavones to equol by human intestinal microflora--implications for health. Mol Nutr Food Res. 2007 Jul;51(7):765-81. [17579894 ]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory1.8 uMNot AvailableBindingDB 23420
IC500.45 uMNot AvailableBindingDB 23420
IC502.16 uMNot AvailableBindingDB 23420
IC506.3 uMNot AvailableBindingDB 23420
IC5017 uMNot AvailableBindingDB 23420
AC500.48 uMACEA_T47D_80hr_PositiveACEA Biosciences
AC500.56 uMATG_ERa_TRANSAttagene
AC500.70 uMATG_ERE_CISAttagene
AC500.12 uMNVS_NR_hERNovascreen
AC504.16 uMOT_ER_ERaERa_1440Odyssey Thera
AC509.92 uMOT_ERa_EREGFP_0120Odyssey Thera
AC503.13 uMTox21_ERa_BLA_Agonist_ratioTox21/NCGC
AC501.53 uMTox21_ERa_LUC_BG1_AgonistTox21/NCGC
References
  1. Jiang Q, Payton-Stewart F, Elliott S, Driver J, Rhodes LV, Zhang Q, Zheng S, Bhatnagar D, Boue SM, Collins-Burow BM, Sridhar J, Stevens C, McLachlan JA, Wiese TE, Burow ME, Wang G: Effects of 7-O substitutions on estrogenic and anti-estrogenic activities of daidzein analogues in MCF-7 breast cancer cells. J Med Chem. 2010 Aug 26;53(16):6153-63. doi: 10.1021/jm100610w. [20669983 ]
  2. Chen HY, Dykstra KD, Birzin ET, Frisch K, Chan W, Yang YT, Mosley RT, DiNinno F, Rohrer SP, Schaeffer JM, Hammond ML: Estrogen receptor ligands. Part 1: The discovery of flavanoids with subtype selectivity. Bioorg Med Chem Lett. 2004 Mar 22;14(6):1417-21. [15006374 ]
  3. Matsuda H, Shimoda H, Morikawa T, Yoshikawa M: Phytoestrogens from the roots of Polygonum cuspidatum (Polygonaceae): structure-requirement of hydroxyanthraquinones for estrogenic activity. Bioorg Med Chem Lett. 2001 Jul 23;11(14):1839-42. [11459643 ]
  4. Calderon AI, Terreaux C, Schenk K, Pattison P, Burdette JE, Pezzuto JM, Gupta MP, Hostettmann K: Isolation and structure elucidation of an isoflavone and a sesterterpenoic acid from Henriettella fascicularis. J Nat Prod. 2002 Dec;65(12):1749-53. [12502307 ]
  5. Wober J, Weisswange I, Vollmer G: Stimulation of alkaline phosphatase activity in Ishikawa cells induced by various phytoestrogens and synthetic estrogens. J Steroid Biochem Mol Biol. 2002 Dec;83(1-5):227-33. [12650720 ]
  6. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA-binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual.
Gene Name:
ESR2
Uniprot ID:
Q92731
Molecular Weight:
59215.765 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory0.3 uMNot AvailableBindingDB 23420
IC500.303 uMNot AvailableBindingDB 23420
IC501.1 uMNot AvailableBindingDB 23420
IC501.2 uMNot AvailableBindingDB 23420
AC504.88 uMOT_ER_ERaERb_0480Odyssey Thera
AC502.56 uMOT_ER_ERaERb_1440Odyssey Thera
AC500.85 uMOT_ER_ERbERb_0480Odyssey Thera
AC500.75 uMOT_ER_ERbERb_1440Odyssey Thera
References
  1. Chen HY, Dykstra KD, Birzin ET, Frisch K, Chan W, Yang YT, Mosley RT, DiNinno F, Rohrer SP, Schaeffer JM, Hammond ML: Estrogen receptor ligands. Part 1: The discovery of flavanoids with subtype selectivity. Bioorg Med Chem Lett. 2004 Mar 22;14(6):1417-21. [15006374 ]
  2. Matsuda H, Shimoda H, Morikawa T, Yoshikawa M: Phytoestrogens from the roots of Polygonum cuspidatum (Polygonaceae): structure-requirement of hydroxyanthraquinones for estrogenic activity. Bioorg Med Chem Lett. 2001 Jul 23;11(14):1839-42. [11459643 ]
  3. Calderon AI, Terreaux C, Schenk K, Pattison P, Burdette JE, Pezzuto JM, Gupta MP, Hostettmann K: Isolation and structure elucidation of an isoflavone and a sesterterpenoic acid from Henriettella fascicularis. J Nat Prod. 2002 Dec;65(12):1749-53. [12502307 ]
  4. Overk CR, Yao P, Chadwick LR, Nikolic D, Sun Y, Cuendet MA, Deng Y, Hedayat AS, Pauli GF, Farnsworth NR, van Breemen RB, Bolton JL: Comparison of the in vitro estrogenic activities of compounds from hops (Humulus lupulus) and red clover (Trifolium pratense). J Agric Food Chem. 2005 Aug 10;53(16):6246-53. [16076101 ]
  5. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA: Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998 Oct;139(10):4252-63. [9751507 ]
  6. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Transcription regulatory region dna binding
Specific Function:
Ligand-activated transcriptional activator. Binds to the XRE promoter region of genes it activates. Activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons. Involved in cell-cycle regulation. Likely to play an important role in the development and maturation of many tissues. Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1. Inhibits PER1 by repressing the CLOCK-ARNTL/BMAL1 heterodimer mediated transcriptional activation of PER1.
Gene Name:
AHR
Uniprot ID:
P35869
Molecular Weight:
96146.705 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC507.75 uMTox21_AhRTox21/NCGC
References
  1. Wang H, Li J, Gao Y, Xu Y, Pan Y, Tsuji I, Sun ZJ, Li XM: Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor. Asian J Androl. 2010 Jul;12(4):535-47. doi: 10.1038/aja.2010.14. Epub 2010 May 3. [20436506 ]
  2. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Electron carrier activity
Specific Function:
Not Available
Gene Name:
ALDH2
Uniprot ID:
P05091
Molecular Weight:
56380.93 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC509 uMNot AvailableBindingDB 23420
References
  1. Rooke N, Li DJ, Li J, Keung WM: The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of daidzin. J Med Chem. 2000 Nov 2;43(22):4169-79. [11063613 ]
  2. Gao GY, Li DJ, Keung WM: Synthesis of potential antidipsotropic isoflavones: inhibitors of the mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway. J Med Chem. 2001 Sep 27;44(20):3320-8. [11563931 ]
General Function:
Oxygen binding
Specific Function:
Catalyzes the formation of aromatic C18 estrogens from C19 androgens.
Gene Name:
CYP19A1
Uniprot ID:
P11511
Molecular Weight:
57882.48 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory100 uMNot AvailableBindingDB 23420
References
  1. Paoletta S, Steventon GB, Wildeboer D, Ehrman TM, Hylands PJ, Barlow DJ: Screening of herbal constituents for aromatase inhibitory activity. Bioorg Med Chem. 2008 Sep 15;16(18):8466-70. doi: 10.1016/j.bmc.2008.08.034. Epub 2008 Aug 19. [18778944 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes.
Gene Name:
NR1I2
Uniprot ID:
O75469
Molecular Weight:
49761.245 Da
References
  1. Kretschmer XC, Baldwin WS: CAR and PXR: xenosensors of endocrine disrupters? Chem Biol Interact. 2005 Aug 15;155(3):111-28. [16054614 ]
General Function:
Zinc ion binding
Specific Function:
Binds to an ERR-alpha response element (ERRE) containing a single consensus half-site, 5'-TNAAGGTCA-3'. Can bind to the medium-chain acyl coenzyme A dehydrogenase (MCAD) response element NRRE-1 and may act as an important regulator of MCAD promoter. Binds to the C1 region of the lactoferrin gene promoter. Requires dimerization and the coactivator, PGC-1A, for full activity. The ERRalpha/PGC1alpha complex is a regulator of energy metabolism. Induces the expression of PERM1 in the skeletal muscle.
Gene Name:
ESRRA
Uniprot ID:
P11474
Molecular Weight:
45509.11 Da
References
  1. Suetsugi M, Su L, Karlsberg K, Yuan YC, Chen S: Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Mol Cancer Res. 2003 Nov;1(13):981-91. [14638870 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor, may regulate ESR1 transcriptional activity. Induces the expression of PERM1 in the skeletal muscle.
Gene Name:
ESRRB
Uniprot ID:
O95718
Molecular Weight:
56207.085 Da
References
  1. Suetsugi M, Su L, Karlsberg K, Yuan YC, Chen S: Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Mol Cancer Res. 2003 Nov;1(13):981-91. [14638870 ]
General Function:
Xanthine oxidase activity
Specific Function:
Key enzyme in purine degradation. Catalyzes the oxidation of hypoxanthine to xanthine. Catalyzes the oxidation of xanthine to uric acid. Contributes to the generation of reactive oxygen species. Has also low oxidase activity towards aldehydes (in vitro).
Gene Name:
XDH
Uniprot ID:
P47989
Molecular Weight:
146422.99 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50429.8 uMNot AvailableBindingDB 23420
IC50>1000 uMNot AvailableBindingDB 23420
References
  1. Park JS, Park HY, Kim DH, Kim DH, Kim HK: ortho-dihydroxyisoflavone derivatives from aged Doenjang (Korean fermented soypaste) and its radical scavenging activity. Bioorg Med Chem Lett. 2008 Sep 15;18(18):5006-9. doi: 10.1016/j.bmcl.2008.08.016. Epub 2008 Aug 9. [18722771 ]
General Function:
Zinc ion binding
Specific Function:
Ligand-activated transcription factor. Receptor for bile acids such as chenodeoxycholic acid, lithocholic acid and deoxycholic acid. Represses the transcription of the cholesterol 7-alpha-hydroxylase gene (CYP7A1) through the induction of NR0B2 or FGF19 expression, via two distinct mechanisms. Activates the intestinal bile acid-binding protein (IBABP). Activates the transcription of bile salt export pump ABCB11 by directly recruiting histone methyltransferase CARM1 to this locus.
Gene Name:
NR1H4
Uniprot ID:
Q96RI1
Molecular Weight:
55913.915 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
AC504.19 uMOT_SRC1_SRC1FXR_1440Odyssey Thera
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]