Record Information |
---|
Version | 2.0 |
---|
Creation Date | 2009-06-19 21:58:22 UTC |
---|
Update Date | 2014-12-24 20:23:14 UTC |
---|
Accession Number | T3D1156 |
---|
Identification |
---|
Common Name | Zinc permanganate |
---|
Class | Small Molecule |
---|
Description | Zinc permanganate is a chemical compound of manganese and zinc. Zinc is a metallic element with the atomic number 30. It is found in nature most often as the mineral sphalerite. Though excess zinc in harmful, in smaller amounts it is an essential element for life, as it is a cofactor for over 300 enzymes and is found in just as many transcription factors. Manganese is a naturally occurring metal with the symbol Mn and the atomic number 25. It does not occur naturally in its pure form, but is found in many types of rocks in combination with other substances such as oxygen, sulfur, or chlorine. Manganese occurs naturally in most foods and small amounts are needed to stay healthy, as manganese ions act as cofactors for a number of enzymes. (6, 7, 2, 3) |
---|
Compound Type | - Food Toxin
- Inorganic Compound
- Pollutant
- Synthetic Compound
- Zinc Compound
|
---|
Chemical Structure | |
---|
Synonyms | Synonym | Permanganic acid (hmno4), zinc salt | Zinc permanganic acid | Zinc permangante |
|
---|
Chemical Formula | Mn2O8Zn |
---|
Average Molecular Mass | 303.280 g/mol |
---|
Monoisotopic Mass | 301.765 g/mol |
---|
CAS Registry Number | 23414-72-4 |
---|
IUPAC Name | hexaoxo-2,4-dioxa-3-zinca-1,5-dimanganapentane |
---|
Traditional Name | hexaoxo-2,4-dioxa-3-zinca-1,5-dimanganapentane |
---|
SMILES | O=[Mn](=O)(=O)O[Zn]O[Mn](=O)(=O)=O |
---|
InChI Identifier | InChI=1S/2Mn.8O.Zn |
---|
InChI Key | InChIKey=JHZOBHYRURPUNP-UHFFFAOYSA-N |
---|
Chemical Taxonomy |
---|
Description | belongs to the class of inorganic compounds known as transition metal permanganates. These are inorganic compounds in which the largest oxoanion is permanganate, and in which the heaviest atom not in an oxoanion is a transition metal. |
---|
Kingdom | Inorganic compounds |
---|
Super Class | Mixed metal/non-metal compounds |
---|
Class | Transition metal oxoanionic compounds |
---|
Sub Class | Transition metal permanganates |
---|
Direct Parent | Transition metal permanganates |
---|
Alternative Parents | |
---|
Substituents | - Transition metal permanganate
- Inorganic oxide
- Inorganic salt
|
---|
Molecular Framework | Not Available |
---|
External Descriptors | Not Available |
---|
Biological Properties |
---|
Status | Detected and Not Quantified |
---|
Origin | Exogenous |
---|
Cellular Locations | |
---|
Biofluid Locations | Not Available |
---|
Tissue Locations | Not Available |
---|
Pathways | Not Available |
---|
Applications | Not Available |
---|
Biological Roles | Not Available |
---|
Chemical Roles | Not Available |
---|
Physical Properties |
---|
State | Solid |
---|
Appearance | Purple crystals. |
---|
Experimental Properties | Property | Value |
---|
Melting Point | Not Available | Boiling Point | Not Available | Solubility | Not Available | LogP | Not Available |
|
---|
Predicted Properties | |
---|
Spectra |
---|
Spectra | Spectrum Type | Description | Splash Key | Deposition Date | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0udi-0109000000-cc17992f8aa4bc84f519 | 2019-02-22 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-0udi-0509000000-b35b69019f9ac7c17618 | 2019-02-22 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-0f89-0900000000-8fc6f37422e6d2c994d1 | 2019-02-22 | View Spectrum |
|
---|
Toxicity Profile |
---|
Route of Exposure | Oral (3) ; inhalation (3) ; dermal (3) |
---|
Mechanism of Toxicity | Manganese is a cellular toxicant that can impair transport systems, enzyme activities, and receptor functions. It primarily targets the central nervous system, particularily the globus pallidus of the basal ganglia. It is believed that the manganese ion, Mn(II), enhances the autoxidation or turnover of various intracellular catecholamines, leading to increased production of free radicals, reactive oxygen species, and other cytotoxic metabolites, along with a depletion of cellular antioxidant defense mechanisms, leading to oxidative damage and selective destruction of dopaminergic neurons. In addition to dopamine, manganese is thought to perturbations other neurotransmitters, such as GABA and glutamate. In order to produce oxidative damage, manganese must first overwhelm the antioxidant enzyme manganese superoxide dismutase. The neurotoxicity of Mn(II) has also been linked to its ability to substitute for Ca(II) under physiological conditions. It can enter mitochondria via the calcium uniporter and inhibit mitochondrial oxidative phosphorylation. It may also inhibit the efflux of Ca(II), which can result in a loss of mitochondrial membrane integrity. Mn(II) has been shown to inhibit mitochondrial aconitase activity to a significant level, altering amino acid metabolism and cellular iron homeostasis. Anaemia results from the excessive absorption of zinc suppressing copper and iron absorption, most likely through competitive binding of intestinal mucosal cells. Unbalanced levels of copper and zinc binding to Cu,Zn-superoxide dismutase has been linked to amyotrophic lateral sclerosis (ALS). Stomach acid dissolves metallic zinc to give corrosive zinc chloride, which can cause damage to the stomach lining. Metal fume fever is thought to be an immune response to inhaled zinc. (2, 3, 1, 6) |
---|
Metabolism | Manganese is absorbed mainly via ingestion, but can also be inhaled. It binds to alpha-2-macroglobulin, albumin, or transferrin in the plasma and is distributed to the brain and all other mammalian tissues, though it tends to accumulate more in the liver, pancreas, and kidney. Manganese is capable of existing in a number of oxidation states and is believed to undergo changes in oxidation state within the body. Manganese oxidation state can influence tissue toxicokinetic behavior, and possibly toxicity. Manganese is excreted primarily in the faeces. Zinc can enter the body through the lungs, skin, and gastrointestinal tract. Intestinal absorption of zinc is controlled by zinc carrier protein CRIP. Zinc also binds to metallothioneins, which help prevent absorption of excess zinc. Zinc is widely distributed and found in all tissues and tissues fluids, concentrating in the liver, gastrointestinal tract, kidney, skin, lung, brain, heart, and pancreas. In the bloodstream zinc is found bound to carbonic anhydrase in erythrocytes, as well as bound to albumin, _2-macroglobulin, and amino acids in the the plasma. Albumin and amino acid bound zinc can diffuse across tissue membranes. Zinc is excreted in the urine and faeces. (3, 6) |
---|
Toxicity Values | Not Available |
---|
Lethal Dose | Not Available |
---|
Carcinogenicity (IARC Classification) | No indication of carcinogenicity to humans (not listed by IARC). |
---|
Uses/Sources | Not Available |
---|
Minimum Risk Level | Chronic Inhalation: 0.0003 mg/m3 (Manganese) (5)
Intermediate Oral: 0.3 mg/kg/day (Zinc) (5)
Chronic Oral: 0.3 mg/kg/day (Zinc) (5) |
---|
Health Effects | Manganese mainly affects the nervous system and may cause behavioral changes and other nervous system effects, which include movements that may become slow and clumsy. This combination of symptoms when sufficiently severe is referred to as “manganism”. (6) |
---|
Symptoms | Manganese mainly affects the nervous system and may cause behavioral changes and other nervous system effects, which include movements that may become slow and clumsy. This combination of symptoms when sufficiently severe is referred to as “manganism”. (6) |
---|
Treatment | Zinc poisoning is treated symptomatically, often by administering fluids such as water or milk, or with gastric lavage. (3) |
---|
Normal Concentrations |
---|
| Not Available |
---|
Abnormal Concentrations |
---|
| Not Available |
---|
External Links |
---|
DrugBank ID | Not Available |
---|
HMDB ID | Not Available |
---|
PubChem Compound ID | 31896 |
---|
ChEMBL ID | Not Available |
---|
ChemSpider ID | Not Available |
---|
KEGG ID | Not Available |
---|
UniProt ID | Not Available |
---|
OMIM ID | |
---|
ChEBI ID | Not Available |
---|
BioCyc ID | Not Available |
---|
CTD ID | Not Available |
---|
Stitch ID | Zinc permanganate |
---|
PDB ID | Not Available |
---|
ACToR ID | Not Available |
---|
Wikipedia Link | Not Available |
---|
References |
---|
Synthesis Reference | Not Available |
---|
MSDS | T3D1156.pdf |
---|
General References | - Vonk WI, Klomp LW: Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis. Biochem Soc Trans. 2008 Dec;36(Pt 6):1322-8. doi: 10.1042/BST0361322. [19021549 ]
- Wikipedia. Zinc. Last Updated 24 March 2009. [Link]
- ATSDR - Agency for Toxic Substances and Disease Registry (2005). Toxicological profile for zinc. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
- Wikipedia. Metallothionein. Last Updated 20 December 2008. [Link]
- ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
- ATSDR - Agency for Toxic Substances and Disease Registry (2008). Toxicological profile for manganese. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
- Wikipedia. Manganese. Last Updated 26 May 2009. [Link]
|
---|
Gene Regulation |
---|
Up-Regulated Genes | Not Available |
---|
Down-Regulated Genes | Not Available |
---|