Record Information
Version2.0
Creation Date2009-06-19 21:58:22 UTC
Update Date2014-12-24 20:23:14 UTC
Accession NumberT3D1156
Identification
Common NameZinc permanganate
ClassSmall Molecule
DescriptionZinc permanganate is a chemical compound of manganese and zinc. Zinc is a metallic element with the atomic number 30. It is found in nature most often as the mineral sphalerite. Though excess zinc in harmful, in smaller amounts it is an essential element for life, as it is a cofactor for over 300 enzymes and is found in just as many transcription factors. Manganese is a naturally occurring metal with the symbol Mn and the atomic number 25. It does not occur naturally in its pure form, but is found in many types of rocks in combination with other substances such as oxygen, sulfur, or chlorine. Manganese occurs naturally in most foods and small amounts are needed to stay healthy, as manganese ions act as cofactors for a number of enzymes. (6, 7, 2, 3)
Compound Type
  • Food Toxin
  • Inorganic Compound
  • Pollutant
  • Synthetic Compound
  • Zinc Compound
Chemical Structure
Thumb
Synonyms
Synonym
Permanganic acid (hmno4), zinc salt
Zinc permanganic acid
Zinc permangante
Chemical FormulaMn2O8Zn
Average Molecular Mass303.280 g/mol
Monoisotopic Mass301.765 g/mol
CAS Registry Number23414-72-4
IUPAC Namehexaoxo-2,4-dioxa-3-zinca-1,5-dimanganapentane
Traditional Namehexaoxo-2,4-dioxa-3-zinca-1,5-dimanganapentane
SMILESO=[Mn](=O)(=O)O[Zn]O[Mn](=O)(=O)=O
InChI IdentifierInChI=1S/2Mn.8O.Zn
InChI KeyInChIKey=JHZOBHYRURPUNP-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of inorganic compounds known as transition metal permanganates. These are inorganic compounds in which the largest oxoanion is permanganate, and in which the heaviest atom not in an oxoanion is a transition metal.
KingdomInorganic compounds
Super ClassMixed metal/non-metal compounds
ClassTransition metal oxoanionic compounds
Sub ClassTransition metal permanganates
Direct ParentTransition metal permanganates
Alternative Parents
Substituents
  • Transition metal permanganate
  • Inorganic oxide
  • Inorganic salt
Molecular FrameworkNot Available
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateSolid
AppearancePurple crystals.
Experimental Properties
PropertyValue
Melting PointNot Available
Boiling PointNot Available
SolubilityNot Available
LogPNot Available
Predicted Properties
PropertyValueSource
logP-3.8ChemAxon
pKa (Strongest Basic)-7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area120.88 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity11.36 m³·mol⁻¹ChemAxon
Polarizability14.11 ųChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0udi-0109000000-cc17992f8aa4bc84f5192019-02-22View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udi-0509000000-b35b69019f9ac7c176182019-02-22View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0f89-0900000000-8fc6f37422e6d2c994d12019-02-22View Spectrum
Toxicity Profile
Route of ExposureOral (3) ; inhalation (3) ; dermal (3)
Mechanism of ToxicityManganese is a cellular toxicant that can impair transport systems, enzyme activities, and receptor functions. It primarily targets the central nervous system, particularily the globus pallidus of the basal ganglia. It is believed that the manganese ion, Mn(II), enhances the autoxidation or turnover of various intracellular catecholamines, leading to increased production of free radicals, reactive oxygen species, and other cytotoxic metabolites, along with a depletion of cellular antioxidant defense mechanisms, leading to oxidative damage and selective destruction of dopaminergic neurons. In addition to dopamine, manganese is thought to perturbations other neurotransmitters, such as GABA and glutamate. In order to produce oxidative damage, manganese must first overwhelm the antioxidant enzyme manganese superoxide dismutase. The neurotoxicity of Mn(II) has also been linked to its ability to substitute for Ca(II) under physiological conditions. It can enter mitochondria via the calcium uniporter and inhibit mitochondrial oxidative phosphorylation. It may also inhibit the efflux of Ca(II), which can result in a loss of mitochondrial membrane integrity. Mn(II) has been shown to inhibit mitochondrial aconitase activity to a significant level, altering amino acid metabolism and cellular iron homeostasis. Anaemia results from the excessive absorption of zinc suppressing copper and iron absorption, most likely through competitive binding of intestinal mucosal cells. Unbalanced levels of copper and zinc binding to Cu,Zn-superoxide dismutase has been linked to amyotrophic lateral sclerosis (ALS). Stomach acid dissolves metallic zinc to give corrosive zinc chloride, which can cause damage to the stomach lining. Metal fume fever is thought to be an immune response to inhaled zinc. (2, 3, 1, 6)
MetabolismManganese is absorbed mainly via ingestion, but can also be inhaled. It binds to alpha-2-macroglobulin, albumin, or transferrin in the plasma and is distributed to the brain and all other mammalian tissues, though it tends to accumulate more in the liver, pancreas, and kidney. Manganese is capable of existing in a number of oxidation states and is believed to undergo changes in oxidation state within the body. Manganese oxidation state can influence tissue toxicokinetic behavior, and possibly toxicity. Manganese is excreted primarily in the faeces. Zinc can enter the body through the lungs, skin, and gastrointestinal tract. Intestinal absorption of zinc is controlled by zinc carrier protein CRIP. Zinc also binds to metallothioneins, which help prevent absorption of excess zinc. Zinc is widely distributed and found in all tissues and tissues fluids, concentrating in the liver, gastrointestinal tract, kidney, skin, lung, brain, heart, and pancreas. In the bloodstream zinc is found bound to carbonic anhydrase in erythrocytes, as well as bound to albumin, _2-macroglobulin, and amino acids in the the plasma. Albumin and amino acid bound zinc can diffuse across tissue membranes. Zinc is excreted in the urine and faeces. (3, 6)
Toxicity ValuesNot Available
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesNot Available
Minimum Risk LevelChronic Inhalation: 0.0003 mg/m3 (Manganese) (5) Intermediate Oral: 0.3 mg/kg/day (Zinc) (5) Chronic Oral: 0.3 mg/kg/day (Zinc) (5)
Health EffectsManganese mainly affects the nervous system and may cause behavioral changes and other nervous system effects, which include movements that may become slow and clumsy. This combination of symptoms when sufficiently severe is referred to as “manganism”. (6)
SymptomsManganese mainly affects the nervous system and may cause behavioral changes and other nervous system effects, which include movements that may become slow and clumsy. This combination of symptoms when sufficiently severe is referred to as “manganism”. (6)
TreatmentZinc poisoning is treated symptomatically, often by administering fluids such as water or milk, or with gastric lavage. (3)
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID31896
ChEMBL IDNot Available
ChemSpider IDNot Available
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDNot Available
CTD IDNot Available
Stitch IDZinc permanganate
PDB IDNot Available
ACToR IDNot Available
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D1156.pdf
General References
  1. Vonk WI, Klomp LW: Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis. Biochem Soc Trans. 2008 Dec;36(Pt 6):1322-8. doi: 10.1042/BST0361322. [19021549 ]
  2. Wikipedia. Zinc. Last Updated 24 March 2009. [Link]
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2005). Toxicological profile for zinc. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  4. Wikipedia. Metallothionein. Last Updated 20 December 2008. [Link]
  5. ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  6. ATSDR - Agency for Toxic Substances and Disease Registry (2008). Toxicological profile for manganese. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  7. Wikipedia. Manganese. Last Updated 26 May 2009. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Iron ion binding
Specific Function:
Catalyzes the isomerization of citrate to isocitrate via cis-aconitate.
Gene Name:
ACO2
Uniprot ID:
Q99798
Molecular Weight:
85424.745 Da
References
  1. Crooks DR, Ghosh MC, Braun-Sommargren M, Rouault TA, Smith DR: Manganese targets m-aconitase and activates iron regulatory protein 2 in AF5 GABAergic cells. J Neurosci Res. 2007 Jun;85(8):1797-809. [17469137 ]
General Function:
Rna binding
Specific Function:
Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding.Catalyzes the isomerization of citrate to isocitrate via cis-aconitate.
Gene Name:
ACO1
Uniprot ID:
P21399
Molecular Weight:
98398.14 Da
References
  1. Crooks DR, Ghosh MC, Braun-Sommargren M, Rouault TA, Smith DR: Manganese targets m-aconitase and activates iron regulatory protein 2 in AF5 GABAergic cells. J Neurosci Res. 2007 Jun;85(8):1797-809. [17469137 ]
General Function:
Translation repressor activity
Specific Function:
RNA-binding protein that binds to iron-responsive elements (IRES), which are stem-loop structures found in the 5'-UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'-UTR of transferrin receptor mRNA. Binding to the IRE element in ferritin results in the repression of its mRNA translation. Binding of the protein to the transferrin receptor mRNA inhibits the degradation of this otherwise rapidly degraded mRNA.
Gene Name:
IREB2
Uniprot ID:
P48200
Molecular Weight:
105043.65 Da
References
  1. Crooks DR, Ghosh MC, Braun-Sommargren M, Rouault TA, Smith DR: Manganese targets m-aconitase and activates iron regulatory protein 2 in AF5 GABAergic cells. J Neurosci Res. 2007 Jun;85(8):1797-809. [17469137 ]
General Function:
Tubulin binding
Specific Function:
Its primary physiological function is unclear. Has cytoprotective activity against internal or environmental stresses. May play a role in neuronal development and synaptic plasticity. May be required for neuronal myelin sheath maintenance. May play a role in iron uptake and iron homeostasis. Soluble oligomers are toxic to cultured neuroblastoma cells and induce apoptosis (in vitro) (PubMed:12732622, PubMed:19936054, PubMed:20564047). Association with GPC1 (via its heparan sulfate chains) targets PRNP to lipid rafts. Also provides Cu(2+) or ZN(2+) for the ascorbate-mediated GPC1 deaminase degradation of its heparan sulfate side chains (By similarity).
Gene Name:
PRNP
Uniprot ID:
P04156
Molecular Weight:
27661.21 Da
References
  1. Brazier MW, Davies P, Player E, Marken F, Viles JH, Brown DR: Manganese binding to the prion protein. J Biol Chem. 2008 May 9;283(19):12831-9. doi: 10.1074/jbc.M709820200. Epub 2008 Mar 10. [18332141 ]
General Function:
Not Available
Specific Function:
Not Available
Gene Name:
PRNT
Uniprot ID:
Q86SH4
Molecular Weight:
10755.655 Da
References
  1. Brazier MW, Davies P, Player E, Marken F, Viles JH, Brown DR: Manganese binding to the prion protein. J Biol Chem. 2008 May 9;283(19):12831-9. doi: 10.1074/jbc.M709820200. Epub 2008 Mar 10. [18332141 ]
General Function:
Zinc ion binding
Specific Function:
Destroys radicals which are normally produced within the cells and which are toxic to biological systems.
Gene Name:
SOD1
Uniprot ID:
P00441
Molecular Weight:
15935.685 Da
References
  1. Vonk WI, Klomp LW: Role of transition metals in the pathogenesis of amyotrophic lateral sclerosis. Biochem Soc Trans. 2008 Dec;36(Pt 6):1322-8. doi: 10.1042/BST0361322. [19021549 ]