Record Information
Version2.0
Creation Date2009-07-21 20:26:45 UTC
Update Date2014-12-24 20:25:51 UTC
Accession NumberT3D2772
Identification
Common NameTacrine
ClassSmall Molecule
DescriptionTacrine is only found in individuals that have used or taken this drug. It is a centerally active cholinesterase inhibitor that has been used to counter the effects of muscle relaxants, as a respiratory stimulant, and in the treatment of Alzheimer's disease and other central nervous system disorders. The mechanism of tacrine is not fully known, but it is suggested that the drug is an anticholinesterase agent which reversibly binds with and inactivates cholinesterases. This inhibits the hydrolysis of acetylcholine released from functioning cholinergic neurons, thus leading to an accumulation of acetylcholine at cholinergic synapses. The result is a prolonged effect of acetylcholine.
Compound Type
  • Amine
  • Cholinesterase Inhibitor
  • Drug
  • Metabolite
  • Nootropic Agent
  • Organic Compound
  • Parasympathomimetic
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
1,2,3,4-tetrahydroacridin-9-amine
Cognex
Tacrin
Tacrinum
Talem
Tetrahydroaminacrine
Tetrahydroaminoacridine
Tetrahydroaminocrin
Tetrahydroaminocrine
THA
Chemical FormulaC13H14N2
Average Molecular Mass198.264 g/mol
Monoisotopic Mass198.116 g/mol
CAS Registry Number321-64-2
IUPAC Name1,2,3,4-tetrahydroacridin-9-amine
Traditional Nametacrine
SMILESN=C1C2=C(CCCC2)NC2=CC=CC=C12
InChI IdentifierInChI=1S/C13H14N2/c14-13-9-5-1-3-7-11(9)15-12-8-4-2-6-10(12)13/h1,3,5,7H,2,4,6,8H2,(H2,14,15)
InChI KeyInChIKey=YLJREFDVOIBQDA-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as acridines. These are organic compounds containing the acridine moiety, a linear tricyclic heterocycle which consists of two benzene rings joined by a pyridine ring.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassQuinolines and derivatives
Sub ClassBenzoquinolines
Direct ParentAcridines
Alternative Parents
Substituents
  • Acridine
  • 4-aminoquinoline
  • Aminoquinoline
  • Aminopyridine
  • Benzenoid
  • Pyridine
  • Heteroaromatic compound
  • Azacycle
  • Organic nitrogen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Primary amine
  • Organonitrogen compound
  • Amine
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Membrane
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological Roles
Chemical Roles
Physical Properties
StateSolid
AppearanceWhite powder.
Experimental Properties
PropertyValue
Melting Point183.5°C
Boiling PointNot Available
Solubility217 mg/L
LogP2.71
Predicted Properties
PropertyValueSource
Water Solubility0.14 g/LALOGPS
logP3.13ALOGPS
logP2.63ChemAxon
logS-3.2ALOGPS
pKa (Strongest Basic)8.95ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area38.91 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity61.74 m³·mol⁻¹ChemAxon
Polarizability22.79 ųChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-00r2-0900000000-e2921d2cb64d7c502a4b2017-09-01View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0002-0900000000-453e4e963f034e9de4cf2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0002-0900000000-256a5702a96325bc74f22017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-0002-0900000000-af483bfb98e7e2b87b392017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-006t-0900000000-3c9902ca237f9c26a2fb2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ , positivesplash10-006x-0900000000-dec59115a19fdec78a9f2017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - , positivesplash10-0002-0900000000-c04cbf634e493a774cd52017-09-14View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 90V, Positivesplash10-006t-0900000000-2ea3694383dd21b133562021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 15V, Positivesplash10-0002-0900000000-2ffc3da62f3c0184f7c52021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 35V, Positivesplash10-0002-0900000000-676b079fd7de743702db2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-0002-0900000000-67a5eac4e8faa4d5cd652021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 45V, Positivesplash10-0002-0900000000-b04e175289861dc518f12021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 90V, Positivesplash10-006t-0900000000-9ebb090b4661d7668df32021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 60V, Positivesplash10-0002-0900000000-f2347baf04672bb9e5bb2021-09-20View Spectrum
LC-MS/MSLC-MS/MS Spectrum - 75V, Positivesplash10-0002-0900000000-9a37bfbb7353bd8bce872021-09-20View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-001j-0900000000-2f420836beda4ff3e6b22016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-001i-0900000000-2275f7938116d06948a02016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-001i-2900000000-1f84e054a206191e525d2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0900000000-e9e614ab5237139c59882016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0002-0900000000-0903202525aeeeca151c2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00l2-0900000000-ba164ed659e5620dad0a2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0900000000-d2d648aa4423d0c7a4552021-09-22View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0002-0900000000-d2d648aa4423d0c7a4552021-09-22View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-014m-0900000000-28208ede76de2a1de7642021-09-22View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0002-0900000000-d89ea9976ffd35a15c712021-09-25View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0002-0900000000-d89ea9976ffd35a15c712021-09-25View Spectrum
Toxicity Profile
Route of ExposureOral. Tacrine is rapidly absorbed. Absolute bioavailability of tacrine is approximately 17%.
Mechanism of ToxicityTacrine is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen.
MetabolismHepatic. Cytochrome P450 1A2 is the principal isozyme involved in tacrine metabolism. The major metabolite, 1-hydroxy-tacrine (velnacrine), has central cholinergic activity. Half Life: 2 to 4 hours
Toxicity ValuesNot Available
Lethal DoseThe estimated median lethal dose of tacrine following a single oral dose in rats is 40 mg/kg, or approximately 12 times the maximum recommended human dose of 160 mg/day.
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesFor the palliative treatment of mild to moderate dementia of the Alzheimer's type.
Minimum Risk LevelNot Available
Health EffectsAcute exposure to cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Accumulation of ACh at motor nerves causes overstimulation of nicotinic expression at the neuromuscular junction. When this occurs symptoms such as muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis can be seen. When there is an accumulation of ACh at autonomic ganglia this causes overstimulation of nicotinic expression in the sympathetic system. Symptoms associated with this are hypertension, and hypoglycemia. Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur. Certain reproductive effects in fertility, growth, and development for males and females have been linked specifically to organophosphate pesticide exposure. Most of the research on reproductive effects has been conducted on farmers working with pesticides and insecticdes in rural areas. In females menstrual cycle disturbances, longer pregnancies, spontaneous abortions, stillbirths, and some developmental effects in offspring have been linked to organophosphate pesticide exposure. Prenatal exposure has been linked to impaired fetal growth and development. Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides.
SymptomsOverdosage with cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved.
TreatmentIf the compound has been ingested, rapid gastric lavage should be performed using 5% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of '-oximes' has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally.
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDDB00382
HMDB IDHMDB14526
PubChem Compound ID1935
ChEMBL IDCHEMBL95
ChemSpider ID1859
KEGG IDC01453
UniProt IDNot Available
OMIM ID
ChEBI ID9389
BioCyc IDCPD-10887
CTD IDNot Available
Stitch IDTacrine
PDB IDTHA
ACToR IDNot Available
Wikipedia LinkTacrine
References
Synthesis Reference

S. Shirley Yang, Wayne Boisvert, Nouman A. Muhammad, Jay Weiss, “Controlled release tacrine drug delivery systems and methods for preparing same.” U.S. Patent US5576022, issued February, 1993.

MSDSLink
General References
  1. Qizilbash N, Whitehead A, Higgins J, Wilcock G, Schneider L, Farlow M: Cholinesterase inhibition for Alzheimer disease: a meta-analysis of the tacrine trials. Dementia Trialists' Collaboration. JAMA. 1998 Nov 25;280(20):1777-82. [9842955 ]
  2. Hansen RA, Gartlehner G, Kaufer DJ, Lohr KN, Carey T: [20480924 ]
  3. Drugs.com [Link]
  4. RxList: The Internet Drug Index (2009). [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Serine hydrolase activity
Specific Function:
Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. Role in neuronal apoptosis.
Gene Name:
ACHE
Uniprot ID:
P22303
Molecular Weight:
67795.525 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory0.0069 uMNot AvailableBindingDB 8961
Inhibitory0.03212 uMNot AvailableBindingDB 8961
Inhibitory0.036 uMNot AvailableBindingDB 8961
Inhibitory0.04 uMNot AvailableBindingDB 8961
Inhibitory0.137 uMNot AvailableBindingDB 8961
Inhibitory0.151 uMNot AvailableBindingDB 8961
IC500.03 uMNot AvailableBindingDB 8961
IC500.0335 uMNot AvailableBindingDB 8961
IC500.034 uMNot AvailableBindingDB 8961
IC500.0451 uMNot AvailableBindingDB 8961
IC500.047 uMNot AvailableBindingDB 8961
IC500.052 uMNot AvailableBindingDB 8961
IC500.075 uMNot AvailableBindingDB 8961
IC500.07603 uMNot AvailableBindingDB 8961
IC500.077 uMNot AvailableBindingDB 8961
IC500.078 uMNot AvailableBindingDB 8961
IC500.09 uMNot AvailableBindingDB 8961
IC500.095 uMNot AvailableBindingDB 8961
IC500.1 uMNot AvailableBindingDB 8961
IC500.11 uMNot AvailableBindingDB 8961
IC500.122 uMNot AvailableBindingDB 8961
IC500.128 uMNot AvailableBindingDB 8961
IC500.143 uMNot AvailableBindingDB 8961
IC500.147 uMNot AvailableBindingDB 8961
IC500.15 uMNot AvailableBindingDB 8961
IC500.17 uMNot AvailableBindingDB 8961
IC500.18 uMNot AvailableBindingDB 8961
IC500.19 uMNot AvailableBindingDB 8961
IC500.2 uMNot AvailableBindingDB 8961
IC500.205 uMNot AvailableBindingDB 8961
IC500.25 uMNot AvailableBindingDB 8961
IC500.251 uMNot AvailableBindingDB 8961
IC500.254 uMNot AvailableBindingDB 8961
IC500.267 uMNot AvailableBindingDB 8961
IC500.26977 uMNot AvailableBindingDB 8961
IC500.27 uMNot AvailableBindingDB 8961
IC500.317 uMNot AvailableBindingDB 8961
IC500.35 uMNot AvailableBindingDB 8961
IC500.42 uMNot AvailableBindingDB 8961
IC500.424 uMNot AvailableBindingDB 8961
IC500.484 uMNot AvailableBindingDB 8961
IC500.5 uMNot AvailableBindingDB 8961
IC500.8 uMNot AvailableBindingDB 8961
IC500.926 uMNot AvailableBindingDB 8961
IC501.03 uMNot AvailableBindingDB 8961
IC503.16 uMNot AvailableBindingDB 8961
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
  2. Davis KL: Alzheimer's disease: seeking new ways to preserve brain function. Interview by Alice V. Luddington. Geriatrics. 1999 Feb;54(2):42-7; quiz 48. [10024872 ]
  3. Wang H, Carlier PR, Ho WL, Wu DC, Lee NT, Li CP, Pang YP, Han YF: Effects of bis(7)-tacrine, a novel anti-Alzheimer's agent, on rat brain AChE. Neuroreport. 1999 Mar 17;10(4):789-93. [10208549 ]
  4. Traykov L, Tavitian B, Jobert A, Boller F, Forette F, Crouzel C, Di Giamberardino L, Pappata S: In vivo PET study of cerebral [11C] methyl- tetrahydroaminoacridine distribution and kinetics in healthy human subjects. Eur J Neurol. 1999 May;6(3):273-8. [10210906 ]
  5. Wang H, Tang XC: Anticholinesterase effects of huperzine A, E2020, and tacrine in rats. Zhongguo Yao Li Xue Bao. 1998 Jan;19(1):27-30. [10375753 ]
  6. Kosasa T, Kuriya Y, Matsui K, Yamanishi Y: Effect of donepezil hydrochloride (E2020) on basal concentration of extracellular acetylcholine in the hippocampus of rats. Eur J Pharmacol. 1999 Sep 10;380(2-3):101-7. [10513568 ]
  7. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007 Jan;35(Database issue):D198-201. Epub 2006 Dec 1. [17145705 ]
  8. Martin-Santamaria S, Munoz-Muriedas J, Luque FJ, Gago F: Modulation of binding strength in several classes of active site inhibitors of acetylcholinesterase studied by comparative binding energy analysis. J Med Chem. 2004 Aug 26;47(18):4471-82. [15317459 ]
  9. Fang L, Appenroth D, Decker M, Kiehntopf M, Roegler C, Deufel T, Fleck C, Peng S, Zhang Y, Lehmann J: Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J Med Chem. 2008 Feb 28;51(4):713-6. doi: 10.1021/jm701491k. Epub 2008 Jan 31. [18232655 ]
  10. Tasso B, Catto M, Nicolotti O, Novelli F, Tonelli M, Giangreco I, Pisani L, Sparatore A, Boido V, Carotti A, Sparatore F: Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer's disease. Eur J Med Chem. 2011 Jun;46(6):2170-84. doi: 10.1016/j.ejmech.2011.02.071. Epub 2011 Mar 5. [21459491 ]
  11. Cardozo MG, Iimura Y, Sugimoto H, Yamanishi Y, Hopfinger AJ: QSAR analyses of the substituted indanone and benzylpiperidine rings of a series of indanone-benzylpiperidine inhibitors of acetylcholinesterase. J Med Chem. 1992 Feb 7;35(3):584-9. [1738151 ]
  12. Pool WF, Woolf TF, Reily MD, Caprathe BW, Emmerling MR, Jaen JC: Identification of a 3-hydroxylated tacrine metabolite in rat and man: metabolic profiling implications and pharmacology. J Med Chem. 1996 Jul 19;39(15):3014-8. [8709135 ]
  13. So SS, Karplus M: Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications. J Med Chem. 1997 Dec 19;40(26):4360-71. [9435905 ]
  14. Mohamed T, Yeung JC, Rao PP: Development of 2-substituted-N-(naphth-1-ylmethyl) and N-benzhydrylpyrimidin-4-amines as dual cholinesterase and Abeta-aggregation inhibitors: Synthesis and biological evaluation. Bioorg Med Chem Lett. 2011 Oct 1;21(19):5881-7. doi: 10.1016/j.bmcl.2011.07.091. Epub 2011 Jul 30. [21873056 ]
  15. Yoo ID, Cho KM, Lee CK, Kim WG: Isoterreulactone A, a novel meroterpenoid with anti-acetylcholinesterase activity produced by Aspergillus terreus. Bioorg Med Chem Lett. 2005 Jan 17;15(2):353-6. [15603953 ]
  16. Contreras JM, Rival YM, Chayer S, Bourguignon JJ, Wermuth CG: Aminopyridazines as acetylcholinesterase inhibitors. J Med Chem. 1999 Feb 25;42(4):730-41. [10052979 ]
  17. Contreras JM, Parrot I, Sippl W, Rival YM, Wermuth CG: Design, synthesis, and structure-activity relationships of a series of 3-[2-(1-benzylpiperidin-4-yl)ethylamino]pyridazine derivatives as acetylcholinesterase inhibitors. J Med Chem. 2001 Aug 16;44(17):2707-18. [11495583 ]
  18. de Los Rios C, Egea J, Marco-Contelles J, Leon R, Samadi A, Iriepa I, Moraleda I, Galvez E, Garcia AG, Lopez MG, Villarroya M, Romero A: Synthesis, inhibitory activity of cholinesterases, and neuroprotective profile of novel 1,8-naphthyridine derivatives. J Med Chem. 2010 Jul 22;53(14):5129-43. doi: 10.1021/jm901902w. [20575555 ]
  19. Catto M, Pisani L, Leonetti F, Nicolotti O, Pesce P, Stefanachi A, Cellamare S, Carotti A: Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg Med Chem. 2013 Jan 1;21(1):146-52. doi: 10.1016/j.bmc.2012.10.045. Epub 2012 Nov 7. [23199476 ]
  20. Conejo-Garcia A, Pisani L, Nunez Mdel C, Catto M, Nicolotti O, Leonetti F, Campos JM, Gallo MA, Espinosa A, Carotti A: Homodimeric bis-quaternary heterocyclic ammonium salts as potent acetyl- and butyrylcholinesterase inhibitors: a systematic investigation of the influence of linker and cationic heads over affinity and selectivity. J Med Chem. 2011 Apr 28;54(8):2627-45. doi: 10.1021/jm101299d. Epub 2011 Apr 6. [21417225 ]
  21. Bolea I, Juarez-Jimenez J, de Los Rios C, Chioua M, Pouplana R, Luque FJ, Unzeta M, Marco-Contelles J, Samadi A: Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease. J Med Chem. 2011 Dec 22;54(24):8251-70. doi: 10.1021/jm200853t. Epub 2011 Nov 15. [22023459 ]
  22. Yan J, Sun L, Wu G, Yi P, Yang F, Zhou L, Zhang X, Li Z, Yang X, Luo H, Qiu M: Rational design and synthesis of highly potent anti-acetylcholinesterase activity huperzine A derivatives. Bioorg Med Chem. 2009 Oct 1;17(19):6937-41. doi: 10.1016/j.bmc.2009.08.017. Epub 2009 Aug 14. [19726199 ]
  23. Marco-Contelles J, Leon R, de Los Rios C, Guglietta A, Terencio J, Lopez MG, Garcia AG, Villarroya M: Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer's disease. J Med Chem. 2006 Dec 28;49(26):7607-10. [17181144 ]
  24. Marco-Contelles J, Leon R, de los Rios C, Samadi A, Bartolini M, Andrisano V, Huertas O, Barril X, Luque FJ, Rodriguez-Franco MI, Lopez B, Lopez MG, Garcia AG, Carreiras Mdo C, Villarroya M: Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer's disease. J Med Chem. 2009 May 14;52(9):2724-32. doi: 10.1021/jm801292b. [19374444 ]
  25. Leon R, de los Rios C, Marco-Contelles J, Huertas O, Barril X, Luque FJ, Lopez MG, Garcia AG, Villarroya M: New tacrine-dihydropyridine hybrids that inhibit acetylcholinesterase, calcium entry, and exhibit neuroprotection properties. Bioorg Med Chem. 2008 Aug 15;16(16):7759-69. doi: 10.1016/j.bmc.2008.07.005. Epub 2008 Jul 8. [18640842 ]
  26. Villalobos A, Butler TW, Chapin DS, Chen YL, DeMattos SB, Ives JL, Jones SB, Liston DR, Nagel AA, Nason DM, et al.: 5,7-dihydro-3-[2-[1-(phenylmethyl)-4-piperidinyl]ethyl]-6H- pyrrolo[3,2-f]-1,2-benzisoxazol-6-one: a potent and centrally-selective inhibitor of acetylcholinesterase with an improved margin of safety. J Med Chem. 1995 Jul 21;38(15):2802-8. [7636841 ]
  27. Valli MJ, Tang Y, Kosh JW, Chapman JM Jr, Sowell JW Sr: Synthesis and cholinergic properties of N-aryl-2-[[[5-[(dimethylamino)methyl]-2-furanyl]methyl]thio]ethylamino analogs of ranitidine. J Med Chem. 1992 Aug 21;35(17):3141-7. [1507203 ]
  28. Sowell JW Sr, Tang Y, Valli MJ, Chapman JM Jr, Usher LA, Vaughan CM, Kosh JW: Synthesis and cholinergic properties of bis[[(dimethylamino)methyl]furanyl] analogues of ranitidine. J Med Chem. 1992 Mar 20;35(6):1102-8. [1552502 ]
  29. Andreani A, Cavalli A, Granaiola M, Guardigli M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Recanatini M, Roda A: Synthesis and screening for antiacetylcholinesterase activity of (1-benzyl-4-oxopiperidin-3-ylidene)methylindoles and -pyrroles related to donepezil. J Med Chem. 2001 Nov 8;44(23):4011-4. [11689088 ]
  30. Yu QS, Zhu X, Holloway HW, Whittaker NF, Brossi A, Greig NH: Anticholinesterase activity of compounds related to geneserine tautomers. N-Oxides and 1,2-oxazines. J Med Chem. 2002 Aug 15;45(17):3684-91. [12166941 ]
  31. Luo W, Yu QS, Zhan M, Parrish D, Deschamps JR, Kulkarni SS, Holloway HW, Alley GM, Lahiri DK, Brossi A, Greig NH: Novel anticholinesterases based on the molecular skeletons of furobenzofuran and methanobenzodioxepine. J Med Chem. 2005 Feb 24;48(4):986-94. [15715468 ]
  32. Luo W, Yu QS, Kulkarni SS, Parrish DA, Holloway HW, Tweedie D, Shafferman A, Lahiri DK, Brossi A, Greig NH: Inhibition of human acetyl- and butyrylcholinesterase by novel carbamates of (-)- and (+)-tetrahydrofurobenzofuran and methanobenzodioxepine. J Med Chem. 2006 Apr 6;49(7):2174-85. [16570913 ]
  33. Bianchi DA, Hirschmann GS, Theoduloz C, Bracca AB, Kaufman TS: Synthesis of tricyclic analogs of stephaoxocanidine and their evaluation as acetylcholinesterase inhibitors. Bioorg Med Chem Lett. 2005 Jun 2;15(11):2711-5. [15878275 ]
  34. Wang YH, Zhang ZK, Yang FM, Sun QY, He HP, Di YT, Mu SZ, Lu Y, Chang Y, Zheng QT, Ding M, Dong JH, Hao XJ: Benzylphenethylamine alkaloids from Hosta plantaginea with inhibitory activity against tobacco mosaic virus and acetylcholinesterase. J Nat Prod. 2007 Sep;70(9):1458-61. Epub 2007 Sep 7. [17822295 ]
  35. Wang YH, Long CL, Yang FM, Wang X, Sun QY, Wang HS, Shi YN, Tang GH: Pyrrolidinoindoline alkaloids from Selaginella moellendorfii. J Nat Prod. 2009 Jun;72(6):1151-4. doi: 10.1021/np9001515. [19422203 ]
  36. Al-Rashid ZF, Hsung RP: (+)-Arisugacin A--computational evidence of a dual binding site covalent inhibitor of acetylcholinesterase. Bioorg Med Chem Lett. 2011 May 1;21(9):2687-91. doi: 10.1016/j.bmcl.2010.12.041. Epub 2010 Dec 16. [21216144 ]
  37. Camps P, El Achab R, Morral J, Munoz-Torrero D, Badia A, Banos JE, Vivas NM, Barril X, Orozco M, Luque FJ: New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer's disease. J Med Chem. 2000 Nov 30;43(24):4657-66. [11101357 ]
  38. Camps P, Gomez E, Munoz-Torrero D, Badia A, Clos MV, Curutchet C, Munoz-Muriedas J, Luque FJ: Binding of 13-amidohuprines to acetylcholinesterase: exploring the ligand-induced conformational change of the gly117-gly118 peptide bond in the oxyanion hole. J Med Chem. 2006 Nov 16;49(23):6833-40. [17154513 ]
  39. Rampa A, Bisi A, Belluti F, Gobbi S, Valenti P, Andrisano V, Cavrini V, Cavalli A, Recanatini M: Acetylcholinesterase inhibitors for potential use in Alzheimer's disease: molecular modeling, synthesis and kinetic evaluation of 11H-indeno-[1,2-b]-quinolin-10-ylamine derivatives. Bioorg Med Chem. 2000 Mar;8(3):497-506. [10732965 ]
  40. Recanatini M, Cavalli A, Belluti F, Piazzi L, Rampa A, Bisi A, Gobbi S, Valenti P, Andrisano V, Bartolini M, Cavrini V: SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. J Med Chem. 2000 May 18;43(10):2007-18. [10821713 ]
  41. Rizzo S, Bisi A, Bartolini M, Mancini F, Belluti F, Gobbi S, Andrisano V, Rampa A: Multi-target strategy to address Alzheimer's disease: design, synthesis and biological evaluation of new tacrine-based dimers. Eur J Med Chem. 2011 Sep;46(9):4336-43. doi: 10.1016/j.ejmech.2011.07.004. Epub 2011 Jul 8. [21798635 ]
  42. Nagel AA, Liston DR, Jung S, Mahar M, Vincent LA, Chapin D, Chen YL, Hubbard S, Ives JL, Jones SB, et al.: Design and synthesis of 1-heteroaryl-3-(1-benzyl-4-piperidinyl)propan-1-one derivatives as potent, selective acetylcholinesterase inhibitors. J Med Chem. 1995 Mar 31;38(7):1084-9. [7707311 ]
  43. Cappelli A, Gallelli A, Manini M, Anzini M, Mennuni L, Makovec F, Menziani MC, Alcaro S, Ortuso F, Vomero S: Further studies on the interaction of the 5-hydroxytryptamine3 (5-HT3) receptor with arylpiperazine ligands. development of a new 5-HT3 receptor ligand showing potent acetylcholinesterase inhibitory properties. J Med Chem. 2005 May 19;48(10):3564-75. [15887964 ]
  44. Tong W, Collantes ER, Chen Y, Welsh WJ: A comparative molecular field analysis study of N-benzylpiperidines as acetylcholinesterase inhibitors. J Med Chem. 1996 Jan 19;39(2):380-7. [8558505 ]
  45. Villalobos A, Blake JF, Biggers CK, Butler TW, Chapin DS, Chen YL, Ives JL, Jones SB, Liston DR, Nagel AA, et al.: Novel benzisoxazole derivatives as potent and selective inhibitors of acetylcholinesterase. J Med Chem. 1994 Aug 19;37(17):2721-34. [8064800 ]
  46. Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A, Clos MV, Relat J, Ratia M, Bartolini M, Mancini F, Andrisano V, Salmona M, Minguillon C, Gonzalez-Munoz GC, Rodriguez-Franco MI, Bidon-Chanal A, Luque FJ, Munoz-Torrero D: Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer's and prion diseases. J Med Chem. 2012 Jan 26;55(2):661-9. doi: 10.1021/jm200840c. Epub 2012 Jan 10. [22185619 ]
  47. Rodriguez-Franco MI, Fernandez-Bachiller MI, Perez C, Hernandez-Ledesma B, Bartolome B: Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem. 2006 Jan 26;49(2):459-62. [16420031 ]
  48. Arce MP, Rodriguez-Franco MI, Gonzalez-Munoz GC, Perez C, Lopez B, Villarroya M, Lopez MG, Garcia AG, Conde S: Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer's disease. J Med Chem. 2009 Nov 26;52(22):7249-57. doi: 10.1021/jm900628z. [19856923 ]
  49. Fernandez-Bachiller MI, Perez C, Gonzalez-Munoz GC, Conde S, Lopez MG, Villarroya M, Garcia AG, Rodriguez-Franco MI: Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer's disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J Med Chem. 2010 Jul 8;53(13):4927-37. doi: 10.1021/jm100329q. [20545360 ]
  50. Fernandez-Bachiller MI, Perez C, Monjas L, Rademann J, Rodriguez-Franco MI: New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer's disease, with cholinergic, antioxidant, and beta-amyloid-reducing properties. J Med Chem. 2012 Feb 9;55(3):1303-17. doi: 10.1021/jm201460y. Epub 2012 Jan 27. [22243648 ]
  51. Maalej E, Chabchoub F, Oset-Gasque MJ, Esquivias-Perez M, Gonzalez MP, Monjas L, Perez C, de los Rios C, Rodriguez-Franco MI, Iriepa I, Moraleda I, Chioua M, Romero A, Marco-Contelles J, Samadi A: Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno[2,3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer's disease. Eur J Med Chem. 2012 Aug;54:750-63. doi: 10.1016/j.ejmech.2012.06.038. Epub 2012 Jun 28. [22795665 ]
  52. Samadi A, de los Rios C, Bolea I, Chioua M, Iriepa I, Moraleda I, Bartolini M, Andrisano V, Galvez E, Valderas C, Unzeta M, Marco-Contelles J: Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Eur J Med Chem. 2012 Jun;52:251-62. doi: 10.1016/j.ejmech.2012.03.022. Epub 2012 Mar 30. [22503231 ]
  53. Bolognesi ML, Andrisano V, Bartolini M, Banzi R, Melchiorre C: Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-beta aggregation. J Med Chem. 2005 Jan 13;48(1):24-7. [15633997 ]
  54. Rosini M, Andrisano V, Bartolini M, Bolognesi ML, Hrelia P, Minarini A, Tarozzi A, Melchiorre C: Rational approach to discover multipotent anti-Alzheimer drugs. J Med Chem. 2005 Jan 27;48(2):360-3. [15658850 ]
  55. Bolognesi ML, Banzi R, Bartolini M, Cavalli A, Tarozzi A, Andrisano V, Minarini A, Rosini M, Tumiatti V, Bergamini C, Fato R, Lenaz G, Hrelia P, Cattaneo A, Recanatini M, Melchiorre C: Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer's disease. J Med Chem. 2007 Oct 4;50(20):4882-97. Epub 2007 Sep 13. [17850125 ]
  56. Bolognesi ML, Cavalli A, Valgimigli L, Bartolini M, Rosini M, Andrisano V, Recanatini M, Melchiorre C: Multi-target-directed drug design strategy: from a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer's disease. J Med Chem. 2007 Dec 27;50(26):6446-9. Epub 2007 Nov 30. [18047264 ]
  57. Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C: Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008 Feb 14;51(3):347-72. doi: 10.1021/jm7009364. Epub 2008 Jan 9. [18181565 ]
  58. Rosini M, Simoni E, Bartolini M, Cavalli A, Ceccarini L, Pascu N, McClymont DW, Tarozzi A, Bolognesi ML, Minarini A, Tumiatti V, Andrisano V, Mellor IR, Melchiorre C: Inhibition of acetylcholinesterase, beta-amyloid aggregation, and NMDA receptors in Alzheimer's disease: a promising direction for the multi-target-directed ligands gold rush. J Med Chem. 2008 Aug 14;51(15):4381-4. doi: 10.1021/jm800577j. Epub 2008 Jul 8. [18605718 ]
  59. Rouleau J, Iorga BI, Guillou C: New potent human acetylcholinesterase inhibitors in the tetracyclic triterpene series with inhibitory potency on amyloid beta aggregation. Eur J Med Chem. 2011 Jun;46(6):2193-205. doi: 10.1016/j.ejmech.2011.02.073. Epub 2011 Mar 23. [21435752 ]
  60. Korabecny J, Musilek K, Holas O, Binder J, Zemek F, Marek J, Pohanka M, Opletalova V, Dohnal V, Kuca K: Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease. Bioorg Med Chem Lett. 2010 Oct 15;20(20):6093-5. doi: 10.1016/j.bmcl.2010.08.044. Epub 2010 Aug 16. [20817518 ]
  61. Korabecny J, Musilek K, Zemek F, Horova A, Holas O, Nepovimova E, Opletalova V, Hroudova J, Fisar Z, Jung YS, Kuca K: Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine-new tacrine derivate with cholinergic properties. Bioorg Med Chem Lett. 2011 Nov 1;21(21):6563-6. doi: 10.1016/j.bmcl.2011.08.042. Epub 2011 Aug 22. [21920739 ]
  62. Chaudhaery SS, Roy KK, Shakya N, Saxena G, Sammi SR, Nazir A, Nath C, Saxena AK: Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J Med Chem. 2010 Sep 9;53(17):6490-505. doi: 10.1021/jm100573q. [20684567 ]
  63. Elsinghorst PW, Cieslik JS, Mohr K, Trankle C, Gutschow M: First gallamine-tacrine hybrid: design and characterization at cholinesterases and the M2 muscarinic receptor. J Med Chem. 2007 Nov 15;50(23):5685-95. Epub 2007 Oct 18. [17944454 ]
  64. Sauvaitre T, Barlier M, Herlem D, Gresh N, Chiaroni A, Guenard D, Guillou C: New potent acetylcholinesterase inhibitors in the tetracyclic triterpene series. J Med Chem. 2007 Nov 1;50(22):5311-23. Epub 2007 Sep 29. [17902635 ]
  65. Szymanski P, Karpinski A, Mikiciuk-Olasik E: Synthesis, biological activity and HPLC validation of 1,2,3,4-tetrahydroacridine derivatives as acetylcholinesterase inhibitors. Eur J Med Chem. 2011 Aug;46(8):3250-7. doi: 10.1016/j.ejmech.2011.04.038. Epub 2011 Apr 22. [21570751 ]
  66. Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, Redinbo MR: Crystal structure of human carboxylesterase 1 complexed with the Alzheimer's drug tacrine: from binding promiscuity to selective inhibition. Chem Biol. 2003 Apr;10(4):341-9. [12725862 ]
  67. Peng DY, Sun Q, Zhu XL, Lin HY, Chen Q, Yu NX, Yang WC, Yang GF: Design, synthesis, and bioevaluation of benzamides: novel acetylcholinesterase inhibitors with multi-functions on butylcholinesterase, Abeta aggregation, and beta-secretase. Bioorg Med Chem. 2012 Nov 15;20(22):6739-50. doi: 10.1016/j.bmc.2012.09.016. Epub 2012 Sep 17. [23041347 ]
  68. Butini S, Campiani G, Borriello M, Gemma S, Panico A, Persico M, Catalanotti B, Ros S, Brindisi M, Agnusdei M, Fiorini I, Nacci V, Novellino E, Belinskaya T, Saxena A, Fattorusso C: Exploiting protein fluctuations at the active-site gorge of human cholinesterases: further optimization of the design strategy to develop extremely potent inhibitors. J Med Chem. 2008 Jun 12;51(11):3154-70. doi: 10.1021/jm701253t. Epub 2008 May 15. [18479118 ]
  69. Butini S, Guarino E, Campiani G, Brindisi M, Coccone SS, Fiorini I, Novellino E, Belinskaya T, Saxena A, Gemma S: Tacrine based human cholinesterase inhibitors: synthesis of peptidic-tethered derivatives and their effect on potency and selectivity. Bioorg Med Chem Lett. 2008 Oct 1;18(19):5213-6. doi: 10.1016/j.bmcl.2008.08.076. Epub 2008 Aug 26. [18786825 ]
  70. Savini L, Campiani G, Gaeta A, Pellerano C, Fattorusso C, Chiasserini L, Fedorko JM, Saxena A: Novel and potent tacrine-related hetero- and homobivalent ligands for acetylcholinesterase and butyrylcholinesterase. Bioorg Med Chem Lett. 2001 Jul 9;11(13):1779-82. [11425559 ]
  71. Campiani G, Fattorusso C, Butini S, Gaeta A, Agnusdei M, Gemma S, Persico M, Catalanotti B, Savini L, Nacci V, Novellino E, Holloway HW, Greig NH, Belinskaya T, Fedorko JM, Saxena A: Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors. J Med Chem. 2005 Mar 24;48(6):1919-29. [15771436 ]
  72. Gemma S, Gabellieri E, Huleatt P, Fattorusso C, Borriello M, Catalanotti B, Butini S, De Angelis M, Novellino E, Nacci V, Belinskaya T, Saxena A, Campiani G: Discovery of huperzine A-tacrine hybrids as potent inhibitors of human cholinesterases targeting their midgorge recognition sites. J Med Chem. 2006 Jun 1;49(11):3421-5. [16722663 ]
  73. Tumiatti V, Rosini M, Bartolini M, Cavalli A, Marucci G, Andrisano V, Angeli P, Banzi R, Minarini A, Recanatini M, Melchiorre C: Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 2. Role of the substituents on the phenyl ring and nitrogen atoms of caproctamine. J Med Chem. 2003 Mar 13;46(6):954-66. [12620072 ]
General Function:
Identical protein binding
Specific Function:
Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.
Gene Name:
BCHE
Uniprot ID:
P06276
Molecular Weight:
68417.575 Da
References
  1. Wang H, Tang XC: Anticholinesterase effects of huperzine A, E2020, and tacrine in rats. Zhongguo Yao Li Xue Bao. 1998 Jan;19(1):27-30. [10375753 ]
  2. Krustev AD, Argirova MD, Getova DP, Turiiski VI, Prissadova NA: Calcium-independent tacrine-induced relaxation of rat gastric corpus smooth muscles. Can J Physiol Pharmacol. 2006 Nov;84(11):1133-8. [17218977 ]
  3. Marco JL, Carreiras MC: Recent developments in the synthesis of acetylcholinesterase inhibitors. Mini Rev Med Chem. 2003 Sep;3(6):518-24. [12871155 ]
  4. Ahmed M, Rocha JB, Correa M, Mazzanti CM, Zanin RF, Morsch AL, Morsch VM, Schetinger MR: Inhibition of two different cholinesterases by tacrine. Chem Biol Interact. 2006 Aug 25;162(2):165-71. Epub 2006 Jun 17. [16860785 ]
General Function:
Cation transmembrane transporter activity
Specific Function:
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
Gene Name:
CHRNE
Uniprot ID:
Q04844
Molecular Weight:
54696.54 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC500.044 uMNot AvailableBindingDB 8961
References
  1. Kapkova P, Heller E, Unger M, Folkers G, Holzgrabe U: Random chemistry as a new tool for the generation of small compound libraries: development of a new acetylcholinesterase inhibitor. J Med Chem. 2005 Nov 17;48(23):7496-9. [16279811 ]
General Function:
Drug binding
Specific Function:
Involved in cannabinoid-induced CNS effects. Acts by inhibiting adenylate cyclase. Could be a receptor for anandamide. Inhibits L-type Ca(2+) channel current. Isoform 2 and isoform 3 have altered ligand binding.
Gene Name:
CNR1
Uniprot ID:
P21554
Molecular Weight:
52857.365 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory>1 uMNot AvailableBindingDB 8961
References
  1. Lange JH, Coolen HK, van der Neut MA, Borst AJ, Stork B, Verveer PC, Kruse CG: Design, synthesis, biological properties, and molecular modeling investigations of novel tacrine derivatives with a combination of acetylcholinesterase inhibition and cannabinoid CB1 receptor antagonism. J Med Chem. 2010 Feb 11;53(3):1338-46. doi: 10.1021/jm901614b. [20047331 ]
General Function:
Cannabinoid receptor activity
Specific Function:
Heterotrimeric G protein-coupled receptor for endocannabinoid 2-arachidonoylglycerol mediating inhibition of adenylate cyclase. May function in inflammatory response, nociceptive transmission and bone homeostasis.
Gene Name:
CNR2
Uniprot ID:
P34972
Molecular Weight:
39680.275 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory>1 uMNot AvailableBindingDB 8961
References
  1. Lange JH, Coolen HK, van der Neut MA, Borst AJ, Stork B, Verveer PC, Kruse CG: Design, synthesis, biological properties, and molecular modeling investigations of novel tacrine derivatives with a combination of acetylcholinesterase inhibition and cannabinoid CB1 receptor antagonism. J Med Chem. 2010 Feb 11;53(3):1338-46. doi: 10.1021/jm901614b. [20047331 ]
General Function:
Methylumbelliferyl-acetate deacetylase activity
Specific Function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Shows high catalytic efficiency for hydrolysis of cocaine, 4-methylumbelliferyl acetate, heroin and 6-monoacetylmorphine.
Gene Name:
CES2
Uniprot ID:
O00748
Molecular Weight:
61806.41 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory>100 uMNot AvailableBindingDB 8961
References
  1. Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, Redinbo MR: Crystal structure of human carboxylesterase 1 complexed with the Alzheimer's drug tacrine: from binding promiscuity to selective inhibition. Chem Biol. 2003 Apr;10(4):341-9. [12725862 ]
General Function:
Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular Weight:
58293.76 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory1.94 uMNot AvailableBindingDB 8961
References
  1. Fontana E, Dansette PM, Poli SM: Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity. Curr Drug Metab. 2005 Oct;6(5):413-54. [16248836 ]
General Function:
Zinc ion binding
Specific Function:
NMDA receptor subtype of glutamate-gated ion channels possesses high calcium permeability and voltage-dependent sensitivity to magnesium. Activation requires binding of agonist to both types of subunits.
Gene Name:
GRIN2A
Uniprot ID:
Q12879
Molecular Weight:
165281.215 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC504.9 uMNot AvailableBindingDB 8961
References
  1. Rook Y, Schmidtke KU, Gaube F, Schepmann D, Wunsch B, Heilmann J, Lehmann J, Winckler T: Bivalent beta-carbolines as potential multitarget anti-Alzheimer agents. J Med Chem. 2010 May 13;53(9):3611-7. doi: 10.1021/jm1000024. [20361801 ]
General Function:
Zinc ion binding
Specific Function:
NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity).
Gene Name:
GRIN2B
Uniprot ID:
Q13224
Molecular Weight:
166365.885 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC5044 uMNot AvailableBindingDB 8961
References
  1. Rook Y, Schmidtke KU, Gaube F, Schepmann D, Wunsch B, Heilmann J, Lehmann J, Winckler T: Bivalent beta-carbolines as potential multitarget anti-Alzheimer agents. J Med Chem. 2010 May 13;53(9):3611-7. doi: 10.1021/jm1000024. [20361801 ]
General Function:
Triglyceride lipase activity
Specific Function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester. Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine. Catalyzes the transesterification of cocaine to form cocaethylene. Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate.
Gene Name:
CES1
Uniprot ID:
P23141
Molecular Weight:
62520.62 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory>100 uMNot AvailableBindingDB 8961
References
  1. Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, Redinbo MR: Crystal structure of human carboxylesterase 1 complexed with the Alzheimer's drug tacrine: from binding promiscuity to selective inhibition. Chem Biol. 2003 Apr;10(4):341-9. [12725862 ]
General Function:
Zinc ion binding
Specific Function:
Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids.
Gene Name:
MT2A
Uniprot ID:
P02795
Molecular Weight:
6042.05 Da
References
  1. Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, Redinbo MR: Crystal structure of human carboxylesterase 1 complexed with the Alzheimer's drug tacrine: from binding promiscuity to selective inhibition. Chem Biol. 2003 Apr;10(4):341-9. [12725862 ]
General Function:
Monovalent cation:proton antiporter activity
Specific Function:
Solute transporter for tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, N-methylnicotinamide (NMN), metformin, creatinine, guanidine, procainamide, topotecan, estrone sulfate, acyclovir, ganciclovir and also the zwitterionic cephalosporin, cephalexin and cephradin. Seems to also play a role in the uptake of oxaliplatin (a new platinum anticancer agent). Able to transport paraquat (PQ or N,N-dimethyl-4-4'-bipiridinium); a widely used herbicid. Responsible for the secretion of cationic drugs across the brush border membranes.
Gene Name:
SLC47A1
Uniprot ID:
Q96FL8
Molecular Weight:
61921.585 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC501.1 uMNot AvailableBindingDB 8961
References
  1. Kido Y, Matsson P, Giacomini KM: Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011 Jul 14;54(13):4548-58. doi: 10.1021/jm2001629. Epub 2011 Jun 8. [21599003 ]
General Function:
Drug transmembrane transporter activity
Specific Function:
Solute transporter for tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, N-methylnicotinamide, metformin, creatinine, guanidine, procainamide, topotecan, estrone sulfate, acyclovir, and ganciclovir. Responsible for the secretion of cationic drugs across the brush border membranes.
Gene Name:
SLC47A2
Uniprot ID:
Q86VL8
Molecular Weight:
65083.915 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC50>100 uMNot AvailableBindingDB 8961
References
  1. Kido Y, Matsson P, Giacomini KM: Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011 Jul 14;54(13):4548-58. doi: 10.1021/jm2001629. Epub 2011 Jun 8. [21599003 ]
General Function:
G-protein coupled acetylcholine receptor activity
Specific Function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol.
Gene Name:
CHRM2
Uniprot ID:
P08172
Molecular Weight:
51714.605 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
Inhibitory5.8 uMNot AvailableBindingDB 8961
References
  1. Valli MJ, Tang Y, Kosh JW, Chapman JM Jr, Sowell JW Sr: Synthesis and cholinergic properties of N-aryl-2-[[[5-[(dimethylamino)methyl]-2-furanyl]methyl]thio]ethylamino analogs of ranitidine. J Med Chem. 1992 Aug 21;35(17):3141-7. [1507203 ]
General Function:
Secondary active organic cation transmembrane transporter activity
Specific Function:
Translocates a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN), 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP), the endogenous compounds choline, guanidine, histamine, epinephrine, adrenaline, noradrenaline and dopamine, and the drugs quinine, and metformin. The transport of organic cations is inhibited by a broad array of compounds like tetramethylammonium (TMA), cocaine, lidocaine, NMDA receptor antagonists, atropine, prazosin, cimetidine, TEA and NMN, guanidine, cimetidine, choline, procainamide, quinine, tetrabutylammonium, and tetrapentylammonium. Translocates organic cations in an electrogenic and pH-independent manner. Translocates organic cations across the plasma membrane in both directions. Transports the polyamines spermine and spermidine. Transports pramipexole across the basolateral membrane of the proximal tubular epithelial cells. The choline transport is activated by MMTS. Regulated by various intracellular signaling pathways including inhibition by protein kinase A activation, and endogenously activation by the calmodulin complex, the calmodulin-dependent kinase II and LCK tyrosine kinase.
Gene Name:
SLC22A1
Uniprot ID:
O15245
Molecular Weight:
61153.345 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC5083 uMNot AvailableBindingDB 8961
References
  1. Kido Y, Matsson P, Giacomini KM: Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011 Jul 14;54(13):4548-58. doi: 10.1021/jm2001629. Epub 2011 Jun 8. [21599003 ]
General Function:
Quaternary ammonium group transmembrane transporter activity
Specific Function:
Mediates tubular uptake of organic compounds from circulation. Mediates the influx of agmatine, dopamine, noradrenaline (norepinephrine), serotonin, choline, famotidine, ranitidine, histamin, creatinine, amantadine, memantine, acriflavine, 4-[4-(dimethylamino)-styryl]-N-methylpyridinium ASP, amiloride, metformin, N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, cisplatin and oxaliplatin. Cisplatin may develop a nephrotoxic action. Transport of creatinine is inhibited by fluoroquinolones such as DX-619 and LVFX. This transporter is a major determinant of the anticancer activity of oxaliplatin and may contribute to antitumor specificity.
Gene Name:
SLC22A2
Uniprot ID:
O15244
Molecular Weight:
62579.99 Da
Binding/Activity Constants
TypeValueAssay TypeAssay Source
IC500.68 uMNot AvailableBindingDB 8961
References
  1. Kido Y, Matsson P, Giacomini KM: Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011 Jul 14;54(13):4548-58. doi: 10.1021/jm2001629. Epub 2011 Jun 8. [21599003 ]