Heteroscodratoxin (T3D2631)
Record Information | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Version | 2.0 | ||||||||||
Creation Date | 2009-07-06 21:35:33 UTC | ||||||||||
Update Date | 2014-12-24 20:25:47 UTC | ||||||||||
Accession Number | T3D2631 | ||||||||||
Identification | |||||||||||
Common Name | Heteroscodratoxin | ||||||||||
Class | Protein | ||||||||||
Description | Heteroscodratoxin is a peptide toxin produced by the Togo starburst tarantula (Heteroscodra maculata). It inhibits voltage-gated potassium channels. (1) | ||||||||||
Compound Type |
| ||||||||||
Protein Structure | |||||||||||
Synonyms |
| ||||||||||
Chemical Formula | Not Available | ||||||||||
Average Molecular Mass | 4003.400 g/mol | ||||||||||
CAS Registry Number | Not Available | ||||||||||
Sequence | Not Available | ||||||||||
Chemical Taxonomy | |||||||||||
Description | Not Available | ||||||||||
Kingdom | Organic Compounds | ||||||||||
Super Class | Organic Acids | ||||||||||
Class | Carboxylic Acids and Derivatives | ||||||||||
Sub Class | Amino Acids, Peptides, and Analogues | ||||||||||
Direct Parent | Peptides | ||||||||||
Alternative Parents | Not Available | ||||||||||
Substituents | Not Available | ||||||||||
Molecular Framework | Not Available | ||||||||||
External Descriptors | Not Available | ||||||||||
Biological Properties | |||||||||||
Status | Detected and Not Quantified | ||||||||||
Origin | Exogenous | ||||||||||
Cellular Locations | Not Available | ||||||||||
Biofluid Locations | Not Available | ||||||||||
Tissue Locations | Not Available | ||||||||||
Pathways | Not Available | ||||||||||
Applications | Not Available | ||||||||||
Biological Roles | Not Available | ||||||||||
Chemical Roles | Not Available | ||||||||||
Physical Properties | |||||||||||
State | Liquid | ||||||||||
Appearance | Clear solution. | ||||||||||
Experimental Properties |
| ||||||||||
Predicted Properties | Not Available | ||||||||||
Spectra | |||||||||||
Spectra |
| ||||||||||
Toxicity Profile | |||||||||||
Route of Exposure | Injection (sting/bite) (2) | ||||||||||
Mechanism of Toxicity | Heteroscodratoxin inhibits voltage-gated potassium channels by binding to the extracellular linker of the channel and shifting activation of the channel to more depolarized voltages. (1) | ||||||||||
Metabolism | Free toxin may be removed by opsonization via the reticuloendothelial system (primarily the liver and kidneys) or it may be degraded through cellular internalization via the lysosomes. Lysosomes are membrane-enclosed organelles that contain an array of digestive enzymes, including several proteases. | ||||||||||
Toxicity Values | Not Available | ||||||||||
Lethal Dose | Not Available | ||||||||||
Carcinogenicity (IARC Classification) | No indication of carcinogenicity to humans (not listed by IARC). | ||||||||||
Uses/Sources | Heteroscodratoxin is a peptide toxin produced by the Togo starburst tarantula (Heteroscodra maculata). (1) | ||||||||||
Minimum Risk Level | Not Available | ||||||||||
Health Effects | Heteroscodratoxin is neurotoxic. (1) | ||||||||||
Symptoms | Heteroscodratoxin may cause convulsions, spasms, tremors, and death. (1) | ||||||||||
Treatment | Not Available | ||||||||||
Normal Concentrations | |||||||||||
Not Available | |||||||||||
Abnormal Concentrations | |||||||||||
Not Available | |||||||||||
External Links | |||||||||||
DrugBank ID | Not Available | ||||||||||
HMDB ID | Not Available | ||||||||||
PubChem Compound ID | Not Available | ||||||||||
ChEMBL ID | Not Available | ||||||||||
ChemSpider ID | Not Available | ||||||||||
KEGG ID | Not Available | ||||||||||
UniProt ID | P60992 | ||||||||||
OMIM ID | |||||||||||
ChEBI ID | Not Available | ||||||||||
BioCyc ID | Not Available | ||||||||||
CTD ID | Not Available | ||||||||||
Stitch ID | Not Available | ||||||||||
PDB ID | Not Available | ||||||||||
ACToR ID | Not Available | ||||||||||
Wikipedia Link | Not Available | ||||||||||
References | |||||||||||
Synthesis Reference | Not Available | ||||||||||
MSDS | Not Available | ||||||||||
General References |
| ||||||||||
Gene Regulation | |||||||||||
Up-Regulated Genes | Not Available | ||||||||||
Down-Regulated Genes | Not Available |
Targets
- General Function:
- Ubiquitin-like protein binding
- Specific Function:
- Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain (PubMed:23161216). Plays also a role in the regulation of exocytosis independently of its electrical function (By similarity). Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization (PubMed:8081723, PubMed:1283219, PubMed:10484328, PubMed:12560340, PubMed:19074135, PubMed:19717558, PubMed:24901643). Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB2; channel properties depend on the type of alpha subunits that are part of the channel (By similarity). Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNF1, KCNG1, KCNG3, KCNG4, KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1, creating a functionally diverse range of channel complexes (PubMed:10484328, PubMed:11852086, PubMed:12060745, PubMed:19074135, PubMed:19717558, PubMed:24901643). Heterotetrameric channel activity formed with KCNS3 show increased current amplitude with the threshold for action potential activation shifted towards more negative values in hypoxic-treated pulmonary artery smooth muscle cells (By similarity). Channel properties are also modulated by cytoplasmic ancillary beta subunits such as AMIGO1, KCNE1, KCNE2 and KCNE3, slowing activation and inactivation rate of the delayed rectifier potassium channels (By similarity). In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Major contributor to the slowly inactivating delayed-rectifier voltage-gated potassium current in neurons of the central nervous system, sympathetic ganglion neurons, neuroendocrine cells, pancreatic beta cells, cardiomyocytes and smooth muscle cells. Mediates the major part of the somatodendritic delayed-rectifier potassium current in hippocampal and cortical pyramidal neurons and sympathetic superior cervical ganglion (CGC) neurons that acts to slow down periods of firing, especially during high frequency stimulation. Plays a role in the induction of long-term potentiation (LTP) of neuron excitability in the CA3 layer of the hippocampus (By similarity). Contributes to the regulation of glucose-induced action potential amplitude and duration in pancreatic beta cells, hence limiting calcium influx and insulin secretion (PubMed:23161216). Plays a role in the regulation of resting membrane potential and contraction in hypoxia-treated pulmonary artery smooth muscle cells. May contribute to the regulation of the duration of both the action potential of cardiomyocytes and the heart ventricular repolarization QT interval. Contributes to the pronounced pro-apoptotic potassium current surge during neuronal apoptotic cell death in response to oxidative injury. May confer neuroprotection in response to hypoxia/ischemic insults by suppressing pyramidal neurons hyperexcitability in hippocampal and cortical regions (By similarity). Promotes trafficking of KCNG3, KCNH1 and KCNH2 to the cell surface membrane, presumably by forming heterotetrameric channels with these subunits (PubMed:12060745). Plays a role in the calcium-dependent recruitment and release of fusion-competent vesicles from the soma of neurons, neuroendocrine and glucose-induced pancreatic beta cells by binding key components of the fusion machinery in a pore-independent manner (By similarity).
- Gene Name:
- KCNB1
- Uniprot ID:
- Q14721
- Molecular Weight:
- 95876.615 Da
References
- Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004 Nov;89(11):5387-91. [15531486 ]
- The UniProt Consortium. The Universal Protein Resource (UniProt) Nucleic Acids Res. 2008;36:D190-D195.
- General Function:
- Protein heterodimerization activity
- Specific Function:
- Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB1; channel properties depend on the type of alpha subunits that are part of the channel. Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNS1 and KCNS2, creating a functionally diverse range of channel complexes. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Contributes to the delayed-rectifier voltage-gated potassium current in cortical pyramidal neurons and smooth muscle cells.
- Gene Name:
- KCNB2
- Uniprot ID:
- Q92953
- Molecular Weight:
- 102561.99 Da
References
- Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004 Nov;89(11):5387-91. [15531486 ]
- The UniProt Consortium. The Universal Protein Resource (UniProt) Nucleic Acids Res. 2008;36:D190-D195.
- General Function:
- Metal ion binding
- Specific Function:
- Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits.
- Gene Name:
- KCND1
- Uniprot ID:
- Q9NSA2
- Molecular Weight:
- 71329.6 Da
References
- Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004 Nov;89(11):5387-91. [15531486 ]
- The UniProt Consortium. The Universal Protein Resource (UniProt) Nucleic Acids Res. 2008;36:D190-D195.
- General Function:
- Voltage-gated potassium channel activity
- Specific Function:
- Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Mediates the major part of the dendritic A-type current I(SA) in brain neurons (By similarity). This current is activated at membrane potentials that are below the threshold for action potentials. It regulates neuronal excitability, prolongs the latency before the first spike in a series of action potentials, regulates the frequency of repetitive action potential firing, shortens the duration of action potentials and regulates the back-propagation of action potentials from the neuronal cell body to the dendrites. Contributes to the regulation of the circadian rhytm of action potential firing in suprachiasmatic nucleus neurons, which regulates the circadian rhythm of locomotor activity (By similarity). Functions downstream of the metabotropic glutamate receptor GRM5 and plays a role in neuronal excitability and in nociception mediated by activation of GRM5 (By similarity). Mediates the transient outward current I(to) in rodent heart left ventricle apex cells, but not in human heart, where this current is mediated by another family member. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient (PubMed:10551270, PubMed:15454437, PubMed:14695263, PubMed:14623880, PubMed:14980201, PubMed:16934482, PubMed:24811166, PubMed:24501278). The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:11507158). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCND2 and KCND3; channel properties depend on the type of pore-forming alpha subunits that are part of the channel. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes. Interaction with specific isoforms of the regulatory subunits KCNIP1, KCNIP2, KCNIP3 or KCNIP4 strongly increases expression at the cell surface and thereby increases channel activity; it modulates the kinetics of channel activation and inactivation, shifts the threshold for channel activation to more negative voltage values, shifts the threshold for inactivation to less negative voltages and accelerates recovery after inactivation (PubMed:15454437, PubMed:14623880, PubMed:14980201, PubMed:19171772, PubMed:24501278, PubMed:24811166). Likewise, interaction with DPP6 or DPP10 promotes expression at the cell membrane and regulates both channel characteristics and activity (By similarity).
- Gene Name:
- KCND2
- Uniprot ID:
- Q9NZV8
- Molecular Weight:
- 70535.825 Da
References
- Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004 Nov;89(11):5387-91. [15531486 ]
- The UniProt Consortium. The Universal Protein Resource (UniProt) Nucleic Acids Res. 2008;36:D190-D195.
- General Function:
- Metal ion binding
- Specific Function:
- Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits.
- Gene Name:
- KCND3
- Uniprot ID:
- Q9UK17
- Molecular Weight:
- 73450.53 Da
References
- Armas LA, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004 Nov;89(11):5387-91. [15531486 ]
- The UniProt Consortium. The Universal Protein Resource (UniProt) Nucleic Acids Res. 2008;36:D190-D195.