Record Information
Version2.0
Creation Date2009-06-19 21:58:21 UTC
Update Date2014-12-24 20:23:12 UTC
Accession NumberT3D1138
Identification
Common NameMethylcyclopentadienyl manganese tricarbonyl
ClassSmall Molecule
DescriptionMethylcyclopentadienyl manganese tricarbonyl (MMT) is a chemical compound of manganese. It was initially used as a supplement to the gasoline additive tetraethyl lead to increase a fuel's octane rating, then later also used in unleaded gasoline. It has been banned in various countries in the past due to its toxicity, but is available in most places today, despite controvery over its safety. Manganese is a naturally occurring metal with the symbol Mn and the atomic number 25. It does not occur naturally in its pure form, but is found in many types of rocks in combination with other substances such as oxygen, sulfur, or chlorine. Manganese occurs naturally in most foods and small amounts are needed to stay healthy, as manganese ions act as cofactors for a number of enzymes. (4, 5, 6)
Compound Type
  • Amine
  • Food Toxin
  • Household Toxin
  • Manganese Compound
  • Organic Compound
  • Organometallic
  • Pollutant
  • Synthetic Compound
Chemical Structure
Thumb
Synonyms
Synonym
(1-Methyl-2,4-cyclopentadien-1-yl)manganese tricarbonyl
(methylcyclopentadienyl)manganese tricarbonyl
(methylcyclopentadienyl)tricarbonylmanganese
2-(Methylcyclopentadienyl)manganesetricarbonyl
2-Methylcyclopentadienyl manganese tricarbonyl
2-Methylcyclopentadienylmanganese tricarbonyl
Antiknock-33
Combustion improver -2
Manganese methyl cyclopentadienyl tricarbonyl
Manganese, tricarbonyl methylcyclopentadienyl
Manganese, tricarbonyl(methyl-pi-cyclopentadienyl)- (8CI)
Manganese, tricarbonylmethylcyclopentadienyl
Manganese, tricarbonyl[(1,2,3,4,5-.eta.)-1-methyl-2,4
Methyl cyclopentadienyl manganese tricarbonyl
Methylcyklopentadientrikarbonylmanganium
Methylcymantrene
MMT
Pi-(methylcyclopentadienyl)manganese tricarbonyl
Pi-methylcyclopentadienylmanganese tricarbonyl
Tricarbonyl(2-methylcyclopentadienyl)manganese
Tricarbonyl(eta(5)-methylcyclopentadienyl)manganese
Tricarbonyl(methylcyclopentadienyl)manganese
Chemical FormulaC9H7MnO3
Average Molecular Mass218.088 g/mol
Monoisotopic Mass217.978 g/mol
CAS Registry Number12108-13-3
IUPAC Name2-methylcyclopenta-2,4-dien-1-yl tris(methanidylidyneoxidanium) manganese
Traditional Name2-methylcyclopenta-2,4-dien-1-yl tris(carbon monoxide) manganese
SMILES[Mn].[C-]#[O+].[C-]#[O+].[C-]#[O+].CC1=CC=C[CH]1
InChI IdentifierInChI=1S/C6H7.3CO.Mn/c1-6-4-2-3-5-6;3*1-2;/h2-5H,1H3;;;;
InChI KeyInChIKey=LYHJNAIHGFWRKM-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as cycloalkenes. These are unsaturated monocyclic hydrocarbons having one endocyclic double bond.
KingdomOrganic compounds
Super ClassHydrocarbons
ClassUnsaturated hydrocarbons
Sub ClassOlefins
Direct ParentCycloalkenes
Alternative Parents
Substituents
  • Organic transition metal salt
  • Cycloalkene
  • Organic oxygen compound
  • Unsaturated aliphatic hydrocarbon
  • Hydrocarbon derivative
  • Organic salt
  • Aliphatic homomonocyclic compound
Molecular FrameworkNot Available
External DescriptorsNot Available
Biological Properties
StatusDetected and Not Quantified
OriginExogenous
Cellular Locations
  • Cytoplasm
  • Extracellular
Biofluid LocationsNot Available
Tissue LocationsNot Available
PathwaysNot Available
ApplicationsNot Available
Biological RolesNot Available
Chemical RolesNot Available
Physical Properties
StateLiquid
AppearanceYellow to dark orange liquid.
Experimental Properties
PropertyValue
Melting Point1.5°C
Boiling PointNot Available
Solubility0.029 mg/mL at 25°C [GARRISON,AW et al. (1995)]
LogPNot Available
Predicted Properties
PropertyValueSource
Water Solubility8.04 g/LALOGPS
logP2.21ALOGPS
logP1.55ChemAxon
logS-1ALOGPS
Physiological Charge0ChemAxon
Hydrogen Acceptor Count0ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area0 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity28.31 m³·mol⁻¹ChemAxon
Polarizability9.47 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Spectra
Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-0090000000-618af413accb30414c942016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-0090000000-618af413accb30414c942016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-014i-0090000000-618af413accb30414c942016-06-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-014i-0090000000-f9b84666ff8e388846d92016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-014i-0090000000-f9b84666ff8e388846d92016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-014i-0090000000-f9b84666ff8e388846d92016-08-03View Spectrum
Toxicity Profile
Route of ExposureOral (4) ; inhalation (4)
Mechanism of ToxicityManganese is a cellular toxicant that can impair transport systems, enzyme activities, and receptor functions. It primarily targets the central nervous system, particularily the globus pallidus of the basal ganglia. It is believed that the manganese ion, Mn(II), enhances the autoxidation or turnover of various intracellular catecholamines, leading to increased production of free radicals, reactive oxygen species, and other cytotoxic metabolites, along with a depletion of cellular antioxidant defense mechanisms, leading to oxidative damage and selective destruction of dopaminergic neurons. In addition to dopamine, manganese is thought to perturbations other neurotransmitters, such as GABA and glutamate. In order to produce oxidative damage, manganese must first overwhelm the antioxidant enzyme manganese superoxide dismutase. The neurotoxicity of Mn(II) has also been linked to its ability to substitute for Ca(II) under physiological conditions. It can enter mitochondria via the calcium uniporter and inhibit mitochondrial oxidative phosphorylation. It may also inhibit the efflux of Ca(II), which can result in a loss of mitochondrial membrane integrity. Mn(II) has been shown to inhibit mitochondrial aconitase activity to a significant level, altering amino acid metabolism and cellular iron homeostasis. (4)
MetabolismManganese is absorbed mainly via ingestion, but can also be inhaled. It binds to alpha-2-macroglobulin, albumin, or transferrin in the plasma and is distributed to the brain and all other mammalian tissues, though it tends to accumulate more in the liver, pancreas, and kidney. MMT is metabolized by cytochrome P-450 enzymes into hydroxylmethylcyclopentadienyl manganese tricarbonyl and carboxycyclopentadienyl manganese tricarbonyl. These metabolites are excreted in the urine and faeces. (4)
Toxicity ValuesLD50: 140-795 mg/kg (Dermal, Rabbit) (2) LD50: 58 mg/kg (Oral, Rat) (1) LC50: 247 mg/m3 over 1 hour (Inhalation, Rat) (2)
Lethal DoseNot Available
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Uses/SourcesMethylcyclopentadienyl manganese tricarbonyl (MMT) is a chemical compound of manganese. It was initially used as a supplement to the gasoline additive tetraethyl lead to increase a fuel's octane rating, then later also used in unleaded gasoline. It has been banned in various countries in the past due to its toxicity, but is available in most places today, despite controvery over its safety. (6)
Minimum Risk LevelChronic Inhalation: 0.0003 mg/m3 (3)
Health EffectsManganese mainly affects the nervous system and may cause behavioral changes and other nervous system effects, which include movements that may become slow and clumsy. This combination of symptoms when sufficiently severe is referred to as “manganism”. (4)
SymptomsManganese mainly affects the nervous system and may cause behavioral changes and other nervous system effects, which include movements that may become slow and clumsy. This combination of symptoms when sufficiently severe is referred to as “manganism”. (4)
TreatmentNot Available
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
DrugBank IDNot Available
HMDB IDNot Available
PubChem Compound ID25511
ChEMBL IDNot Available
ChemSpider IDNot Available
KEGG IDNot Available
UniProt IDNot Available
OMIM ID
ChEBI IDNot Available
BioCyc IDMN%2b3
CTD IDC009907
Stitch IDMethylcyclopentadienyl manganese tricarbonyl
PDB IDNot Available
ACToR ID4267
Wikipedia LinkNot Available
References
Synthesis ReferenceNot Available
MSDST3D1138.pdf
General References
  1. Gong P, Kuperman RG, Sunahara GI: Genotoxicity of 2,4- and 2,6-dinitrotoluene as measured by the Tradescantia micronucleus (Trad-MCN) bioassay. Mutat Res. 2003 Jul 8;538(1-2):13-8. [12834750 ]
  2. Verschueren K (1983). Handbook of Environmental Data of Organic Chemicals. 2nd ed. New York, NY: Van Nostrand Reinhold Co.
  3. ATSDR - Agency for Toxic Substances and Disease Registry (2001). Minimal Risk Levels (MRLs) for Hazardous Substances. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  4. ATSDR - Agency for Toxic Substances and Disease Registry (2008). Toxicological profile for manganese. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
  5. Wikipedia. Manganese. Last Updated 26 May 2009. [Link]
  6. Wikipedia. Methylcyclopentadienyl manganese tricarbonyl. Last Updated 9 May 2009. [Link]
Gene Regulation
Up-Regulated GenesNot Available
Down-Regulated GenesNot Available

Targets

General Function:
Iron ion binding
Specific Function:
Catalyzes the isomerization of citrate to isocitrate via cis-aconitate.
Gene Name:
ACO2
Uniprot ID:
Q99798
Molecular Weight:
85424.745 Da
References
  1. Crooks DR, Ghosh MC, Braun-Sommargren M, Rouault TA, Smith DR: Manganese targets m-aconitase and activates iron regulatory protein 2 in AF5 GABAergic cells. J Neurosci Res. 2007 Jun;85(8):1797-809. [17469137 ]
General Function:
Rna binding
Specific Function:
Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding.Catalyzes the isomerization of citrate to isocitrate via cis-aconitate.
Gene Name:
ACO1
Uniprot ID:
P21399
Molecular Weight:
98398.14 Da
References
  1. Crooks DR, Ghosh MC, Braun-Sommargren M, Rouault TA, Smith DR: Manganese targets m-aconitase and activates iron regulatory protein 2 in AF5 GABAergic cells. J Neurosci Res. 2007 Jun;85(8):1797-809. [17469137 ]
General Function:
Translation repressor activity
Specific Function:
RNA-binding protein that binds to iron-responsive elements (IRES), which are stem-loop structures found in the 5'-UTR of ferritin, and delta aminolevulinic acid synthase mRNAs, and in the 3'-UTR of transferrin receptor mRNA. Binding to the IRE element in ferritin results in the repression of its mRNA translation. Binding of the protein to the transferrin receptor mRNA inhibits the degradation of this otherwise rapidly degraded mRNA.
Gene Name:
IREB2
Uniprot ID:
P48200
Molecular Weight:
105043.65 Da
References
  1. Crooks DR, Ghosh MC, Braun-Sommargren M, Rouault TA, Smith DR: Manganese targets m-aconitase and activates iron regulatory protein 2 in AF5 GABAergic cells. J Neurosci Res. 2007 Jun;85(8):1797-809. [17469137 ]
General Function:
Tubulin binding
Specific Function:
Its primary physiological function is unclear. Has cytoprotective activity against internal or environmental stresses. May play a role in neuronal development and synaptic plasticity. May be required for neuronal myelin sheath maintenance. May play a role in iron uptake and iron homeostasis. Soluble oligomers are toxic to cultured neuroblastoma cells and induce apoptosis (in vitro) (PubMed:12732622, PubMed:19936054, PubMed:20564047). Association with GPC1 (via its heparan sulfate chains) targets PRNP to lipid rafts. Also provides Cu(2+) or ZN(2+) for the ascorbate-mediated GPC1 deaminase degradation of its heparan sulfate side chains (By similarity).
Gene Name:
PRNP
Uniprot ID:
P04156
Molecular Weight:
27661.21 Da
References
  1. Brazier MW, Davies P, Player E, Marken F, Viles JH, Brown DR: Manganese binding to the prion protein. J Biol Chem. 2008 May 9;283(19):12831-9. doi: 10.1074/jbc.M709820200. Epub 2008 Mar 10. [18332141 ]
General Function:
Not Available
Specific Function:
Not Available
Gene Name:
PRNT
Uniprot ID:
Q86SH4
Molecular Weight:
10755.655 Da
References
  1. Brazier MW, Davies P, Player E, Marken F, Viles JH, Brown DR: Manganese binding to the prion protein. J Biol Chem. 2008 May 9;283(19):12831-9. doi: 10.1074/jbc.M709820200. Epub 2008 Mar 10. [18332141 ]