Record Information |
---|
Version | 2.0 |
---|
Creation Date | 2009-03-06 18:59:15 UTC |
---|
Update Date | 2014-12-24 20:22:26 UTC |
---|
Accession Number | T3D0628 |
---|
Identification |
---|
Common Name | 1-Methylnaphthalene |
---|
Class | Small Molecule |
---|
Description | 1-Methylnaphthalene is found in black walnut. 1-Methylnaphthalene is a flavouring ingredient. |
---|
Compound Type | - Aromatic Hydrocarbon
- Food Toxin
- Metabolite
- Natural Compound
- Organic Compound
- Pollutant
- Polycyclic Aromatic Hydrocarbon
|
---|
Chemical Structure | |
---|
Synonyms | Synonym | 1-Methyl naphthalene | 1-Methyl-Naphthalene | a-Methyl-Naphthalene | a-Methylnaphthalene | alpha-Methyl-Naphthalene | alpha-Methylnaphthalene | Methyl naphthalene | Methyl-1-naphthalene | Methyl-Naphthalene |
|
---|
Chemical Formula | C11H10 |
---|
Average Molecular Mass | 142.197 g/mol |
---|
Monoisotopic Mass | 142.078 g/mol |
---|
CAS Registry Number | 90-12-0 |
---|
IUPAC Name | 1-methylnaphthalene |
---|
Traditional Name | 1-methylnaphthalene |
---|
SMILES | CC1=CC=CC2=CC=CC=C12 |
---|
InChI Identifier | InChI=1S/C11H10/c1-9-5-4-7-10-6-2-3-8-11(9)10/h2-8H,1H3 |
---|
InChI Key | InChIKey=QPUYECUOLPXSFR-UHFFFAOYSA-N |
---|
Chemical Taxonomy |
---|
Description | belongs to the class of organic compounds known as naphthalenes. Naphthalenes are compounds containing a naphthalene moiety, which consists of two fused benzene rings. |
---|
Kingdom | Organic compounds |
---|
Super Class | Benzenoids |
---|
Class | Naphthalenes |
---|
Sub Class | Not Available |
---|
Direct Parent | Naphthalenes |
---|
Alternative Parents | |
---|
Substituents | - Naphthalene
- Aromatic hydrocarbon
- Polycyclic hydrocarbon
- Unsaturated hydrocarbon
- Hydrocarbon
- Aromatic homopolycyclic compound
|
---|
Molecular Framework | Aromatic homopolycyclic compounds |
---|
External Descriptors | |
---|
Biological Properties |
---|
Status | Detected and Not Quantified |
---|
Origin | Exogenous |
---|
Cellular Locations | |
---|
Biofluid Locations | Not Available |
---|
Tissue Locations | Not Available |
---|
Pathways | Not Available |
---|
Applications | Not Available |
---|
Biological Roles | |
---|
Chemical Roles | Not Available |
---|
Physical Properties |
---|
State | Liquid |
---|
Appearance | Colorless solid. |
---|
Experimental Properties | Property | Value |
---|
Melting Point | -22°C | Boiling Point | 244.6°C (472.3°F) | Solubility | 0.0258 mg/mL at 25°C | LogP | 3.87 |
|
---|
Predicted Properties | |
---|
Spectra |
---|
Spectra | Spectrum Type | Description | Splash Key | Deposition Date | View |
---|
GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-5900000000-1053593aad42a77aa98b | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-2900000000-56264ce7fb87f61d59e3 | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-3900000000-466eebbbc710f9d74e3b | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-3900000000-5b7a1e8903022a3f5a57 | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-0900000000-e017871c9adc6ee00fb9 | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - CI-B (Non-derivatized) | splash10-0006-0900000000-e2ebef06c838787a1720 | 2017-09-12 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-5900000000-1053593aad42a77aa98b | 2018-05-18 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-2900000000-56264ce7fb87f61d59e3 | 2018-05-18 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-3900000000-466eebbbc710f9d74e3b | 2018-05-18 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-3900000000-5b7a1e8903022a3f5a57 | 2018-05-18 | View Spectrum | GC-MS | GC-MS Spectrum - EI-B (Non-derivatized) | splash10-0006-0900000000-e017871c9adc6ee00fb9 | 2018-05-18 | View Spectrum | GC-MS | GC-MS Spectrum - CI-B (Non-derivatized) | splash10-0006-0900000000-e2ebef06c838787a1720 | 2018-05-18 | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positive | splash10-0006-0900000000-0da70ea2233c3affb638 | 2017-09-01 | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0006-0900000000-9a9a9f94bee2dbaba3c0 | 2015-04-24 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-0006-0900000000-5692907557a9baf3d257 | 2015-04-24 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-014l-3900000000-7eef39e40fe85545ba50 | 2015-04-24 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Negative | splash10-0006-0900000000-4b4ea885969f2a72f1b7 | 2015-04-25 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Negative | splash10-0006-0900000000-4b4ea885969f2a72f1b7 | 2015-04-25 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Negative | splash10-0006-0900000000-e204af06be24fa547ed9 | 2015-04-25 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Positive | splash10-0006-0900000000-c989a442d4404542ed61 | 2021-09-25 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Positive | splash10-0006-2900000000-4c5f4b7cbec6cfd38b14 | 2021-09-25 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Positive | splash10-00mo-9800000000-c7005946673c7bd7a926 | 2021-09-25 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 10V, Negative | splash10-0006-0900000000-84dab5fd9e005e323db0 | 2021-09-25 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 20V, Negative | splash10-0006-0900000000-84dab5fd9e005e323db0 | 2021-09-25 | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 40V, Negative | splash10-0006-1900000000-3a4e7194998e40dc39cf | 2021-09-25 | View Spectrum | MS | Mass Spectrum (Electron Ionization) | splash10-0006-2900000000-53cda581a6605326e48c | 2014-09-20 | View Spectrum | 1D NMR | 1H NMR Spectrum (1D, 400 MHz, CDCl3, experimental) | Not Available | 2014-09-20 | View Spectrum | 1D NMR | 13C NMR Spectrum (1D, 25.16 MHz, CDCl3, experimental) | Not Available | 2014-09-23 | View Spectrum |
|
---|
Toxicity Profile |
---|
Route of Exposure | Oral (21) ; inhalation (21) |
---|
Mechanism of Toxicity | The ability of PAH's to bind to blood proteins such as albumin allows them to be transported throughout the body. Many PAH's induce the expression of cytochrome P450 enzymes, especially CYP1A1, CYP1A2, and CYP1B1, by binding to the aryl hydrocarbon receptor or glycine N-methyltransferase protein. These enzymes metabolize PAH's into their toxic intermediates. The reactive metabolites of PAHs (epoxide intermediates, dihydrodiols, phenols, quinones, and their various combinations) covalently bind to DNA and other cellular macromolecules, initiating mutagenesis and carcinogenesis. (21, 22, 2, 3) |
---|
Metabolism | PAH metabolism occurs in all tissues, usually by cytochrome P-450 and its associated enzymes. PAHs are metabolized into reactive intermediates, which include epoxide intermediates, dihydrodiols, phenols, quinones, and their various combinations. The phenols, quinones, and dihydrodiols can all be conjugated to glucuronides and sulfate esters; the quinones also form glutathione conjugates. (21) |
---|
Toxicity Values | LD50: 1840 mg/kg (Oral, Rat) (18) |
---|
Lethal Dose | Not Available |
---|
Carcinogenicity (IARC Classification) | No indication of carcinogenicity (not listed by IARC). (23) |
---|
Uses/Sources | PAHs are released into the environment via the combustion of fossil fuels, coke oven emissions and vehicle exhausts, as well as naturally from forest fires and vocanic eruptions. PAHs from these sources may contaminate nearly water systems. They are also found in coal tar and charbroiled food. (21) |
---|
Minimum Risk Level | Not Available |
---|
Health Effects | PAHs are carcinogens and have been associated with the increased risk of skin, respiratory tract, bladder, stomach, and kidney cancers. They may also cause reproductive effects and depress the immune system. (21) |
---|
Symptoms | Acute exposure to PAHs causes irritation and inflammation of the skin and lung tissue. (1) |
---|
Treatment | There is no know antidote for PAHs. Exposure is usually handled with symptomatic treatment. (21) |
---|
Normal Concentrations |
---|
| Not Available |
---|
Abnormal Concentrations |
---|
| Not Available |
---|
External Links |
---|
DrugBank ID | Not Available |
---|
HMDB ID | HMDB32860 |
---|
PubChem Compound ID | 7002 |
---|
ChEMBL ID | CHEMBL383808 |
---|
ChemSpider ID | 6736 |
---|
KEGG ID | C14082 |
---|
UniProt ID | Not Available |
---|
OMIM ID | |
---|
ChEBI ID | 50717 |
---|
BioCyc ID | ALPHA-NAPHTHALENEACETAMIDE |
---|
CTD ID | C025968 |
---|
Stitch ID | 1-Methylnaphthalene |
---|
PDB ID | Not Available |
---|
ACToR ID | Not Available |
---|
Wikipedia Link | 1-Methylnaphthalene |
---|
References |
---|
Synthesis Reference | Not Available |
---|
MSDS | Link |
---|
General References | - Santodonato J, Howard P, Basu D: Health and ecological assessment of polynuclear aromatic hydrocarbons. J Environ Pathol Toxicol. 1981 Sep;5(1):1-364. [7310260 ]
- Uno S, Dragin N, Miller ML, Dalton TP, Gonzalez FJ, Nebert DW: Basal and inducible CYP1 mRNA quantitation and protein localization throughout the mouse gastrointestinal tract. Free Radic Biol Med. 2008 Feb 15;44(4):570-83. Epub 2007 Nov 12. [17997381 ]
- Padros J, Pelletier E: In vivo formation of (+)-anti-benzo[a]pyrene diol-epoxide-plasma albumin adducts in fish. Mar Environ Res. 2000 Jul-Dec;50(1-5):347-51. [11460716 ]
- Adachi K: Mass fragmentographic determination of polymethylnaphthalene and polymethylphenanthrene in a crude oil and in marine organisms. Bull Environ Contam Toxicol. 1980 Sep;25(3):416-23. [6893557 ]
- Jin M, Kijima A, Suzuki Y, Hibi D, Ishii Y, Nohmi T, Nishikawa A, Ogawa K, Umemura T: In vivo genotoxicity of 1-methylnaphthalene from comprehensive toxicity studies with B6C3F1 gpt delta mice. J Toxicol Sci. 2012;37(4):711-21. [22863852 ]
- Kameda T, Inazu K, Asano K, Murota M, Takenaka N, Sadanaga Y, Hisamatsu Y, Bandow H: Prediction of rate constants for the gas phase reactions of triphenylene with OH and NO3 radicals using a relative rate method in CCl4 liquid phase-system. Chemosphere. 2013 Jan;90(2):766-71. doi: 10.1016/j.chemosphere.2012.09.071. Epub 2012 Oct 22. [23084261 ]
- Kwon HC, Kwon JH: Measuring aqueous solubility in the presence of small cosolvent volume fractions by passive dosing. Environ Sci Technol. 2012 Nov 20;46(22):12550-6. doi: 10.1021/es3035363. Epub 2012 Oct 29. [23088587 ]
- Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, O'Malley BW: Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Mol Endocrinol. 2011 Dec;25(12):2041-53. doi: 10.1210/me.2011-1222. Epub 2011 Nov 3. [22053001 ]
- Shintani M, Matsuo Y, Sakuraba S, Matubayasi N: Interaction of naphthalene derivatives with lipids in membranes studied by the 1H-nuclear Overhauser effect and molecular dynamics simulation. Phys Chem Chem Phys. 2012 Oct 28;14(40):14049-60. Epub 2012 Sep 17. [22983117 ]
- Kleemann R, Meckenstock RU: Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol. 2011 Dec;78(3):488-96. doi: 10.1111/j.1574-6941.2011.01193.x. Epub 2011 Sep 22. [22066721 ]
- Govindarajan M, Karabacak M: FT-IR, FT-Raman and UV spectral investigation: computed frequency estimation analysis and electronic structure calculations on 1-bromo-2-methylnaphthalene. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jan 15;101:314-24. doi: 10.1016/j.saa.2012.09.099. Epub 2012 Oct 12. [23123238 ]
- Lopez ER, Pensado AS, Fernandez J, Harris KR: On the density scaling of pVT data and transport properties for molecular and ionic liquids. J Chem Phys. 2012 Jun 7;136(21):214502. doi: 10.1063/1.4720070. [22697553 ]
- Wang LF, Wu QJ, Zu LL: [Laser-induced fluorescence of 1-methylnaphthalene in a supersonic jet expansion]. Guang Pu Xue Yu Guang Pu Fen Xi. 2011 Nov;31(11):2965-8. [22242496 ]
- Liu J, Tang X, Zhang Y, Zhao W: Determination of the volatile composition in brown millet, milled millet and millet bran by gas chromatography/mass spectrometry. Molecules. 2012 Feb 24;17(3):2271-82. doi: 10.3390/molecules17032271. [22367023 ]
- Molloy JK, Kotova O, Peacock RD, Gunnlaugsson T: Synthesis of luminescent homo-dinuclear cationic lanthanide cyclen complexes bearing amide pendant arms through the use of copper catalysed (1,3-Huisgen, CuAAC) click chemistry. Org Biomol Chem. 2012 Jan 14;10(2):314-22. doi: 10.1039/c1ob06203d. Epub 2011 Nov 9. [22071980 ]
- Berdugo-Clavijo C, Dong X, Soh J, Sensen CW, Gieg LM: Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol. 2012 Jul;81(1):124-33. doi: 10.1111/j.1574-6941.2012.01328.x. Epub 2012 Mar 8. [22324881 ]
- Baedecker MJ, Eganhouse RP, Bekins BA, Delin GN: Loss of volatile hydrocarbons from an LNAPL oil source. J Contam Hydrol. 2011 Nov 1;126(3-4):140-52. doi: 10.1016/j.jconhyd.2011.06.006. Epub 2011 Jul 19. [22115081 ]
- Lewis RJ (1996). Sax's Dangerous Properties of Industrial Materials. 9th ed. Volumes 1-3. New York, NY: Van Nostrand Reinhold.
- Rumack BH (2009). POISINDEX(R) Information System. Englewood, CO: Micromedex, Inc. CCIS Volume 141, edition expires Aug, 2009.
- Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.
- ATSDR - Agency for Toxic Substances and Disease Registry (1995). Toxicological profile for PAHs. U.S. Public Health Service in collaboration with U.S. Environmental Protection Agency (EPA). [Link]
- Wikipedia. Benzopyrene. Last Updated 22 January 2009. [Link]
- International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. [Link]
|
---|
Gene Regulation |
---|
Up-Regulated Genes | Not Available |
---|
Down-Regulated Genes | Not Available |
---|