NameTransforming acidic coiled-coil-containing protein 3
Synonyms
  • ERIC-1
  • ERIC1
Gene NameTACC3
OrganismHuman
Amino acid sequence
>lcl|BSEQ0021463|Transforming acidic coiled-coil-containing protein 3
MSLQVLNDKNVSNEKNTENCDFLFSPPEVTGRSSVLRVSQKENVPPKNLAKAMKVTFQTP
LRDPQTHRILSPSMASKLEAPFTQDDTLGLENSHPVWTQKENQQLIKEVDAKTTHGILQK
PVEADTDLLGDASPAFGSGSSSESGPGALADLDCSSSSQSPGSSENQMVSPGKVSGSPEQ
AVEENLSSYSLDRRVTPASETLEDPCRTESQHKAETPHGAEEECKAETPHGAEEECRHGG
VCAPAAVATSPPGAIPKEACGGAPLQGLPGEALGCPAGVGTPVPADGTQTLTCAHTSAPE
STAPTNHLVAGRAMTLSPQEEVAAGQMASSSRSGPVKLEFDVSDGATSKRAPPPRRLGER
SGLKPPLRKAAVRQQKAPQEVEEDDGRSGAGEDPPMPASRGSYHLDWDKMDDPNFIPFGG
DTKSGCSEAQPPESPETRLGQPAAEQLHAGPATEEPGPCLSQQLHSASAEDTPVVQLAAE
TPTAESKERALNSASTSLPTSCPGSEPVPTHQQGQPALELKEESFRDPAEVLGTGAEVDY
LEQFGTSSFKESALRKQSLYLKFDPLLRDSPGRPVPVATETSSMHGANETPSGRPREAKL
VEFDFLGALDIPVPGPPPGVPAPGGPPLSTGPIVDLLQYSQKDLDAVVKATQEENRELRS
RCEELHGKNLELGKIMDRFEEVVYQAMEEVQKQKELSKAEIQKVLKEKDQLTTDLNSMEK
SFSDLFKRFEKQKEVIEGYRKNEESLKKCVEDYLARITQEGQRYQALKAHAEEKLQLANE
EIAQVRSKAQAEALALQASLRKEQMRIQSLEKTVEQKTKENEELTRICDDLISKMEKI
Number of residues838
Molecular Weight90358.865
Theoretical pINot Available
GO Classification
Processes
  • regulation of cell cycle
  • cell proliferation
  • response to hypoxia
  • regulation of microtubule-based process
  • hemopoiesis
  • cerebral cortex development
  • microtubule cytoskeleton organization
  • cytoplasmic sequestering of transcription factor
  • neurogenesis
  • astral microtubule organization
  • interkinetic nuclear migration
Components
  • cytoplasm
  • microtubule cytoskeleton
General FunctionNot Available
Specific FunctionPlays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May be involved in the control of cell growth and differentiation. May contribute to cancer.
Pfam Domain Function
Transmembrane RegionsNot Available
GenBank Protein IDNot Available
UniProtKB IDQ9Y6A5
UniProtKB Entry NameTACC3_HUMAN
Cellular LocationCytoplasm
Gene sequence
>lcl|BSEQ0021464|Transforming acidic coiled-coil-containing protein 3 (TACC3)
ATGAGTCTGCAGGTCTTAAACGACAAAAATGTCAGCAATGAAAAAAATACAGAAAATTGC
GACTTCCTGTTTTCGCCACCAGAAGTTACCGGAAGATCGTCTGTTCTTCGTGTGTCACAG
AAAGAAAATGTGCCACCCAAGAACCTGGCCAAAGCTATGAAGGTGACTTTTCAGACACCT
CTGCGGGATCCACAGACGCACAGGATTCTAAGTCCTAGCATGGCCAGCAAACTTGAGGCT
CCTTTCACTCAGGATGACACCCTTGGACTGGAAAACTCACACCCGGTCTGGACACAGAAA
GAGAACCAACAGCTCATCAAGGAAGTGGATGCCAAAACTACTCATGGAATTCTACAGAAA
CCAGTGGAGGCTGACACCGACCTCCTGGGGGATGCAAGCCCAGCCTTTGGGAGTGGCAGC
TCCAGCGAGTCTGGCCCAGGTGCCCTGGCTGACCTGGACTGCTCAAGCTCTTCCCAGAGC
CCAGGAAGTTCTGAGAACCAAATGGTGTCTCCAGGAAAAGTGTCTGGCAGCCCTGAGCAA
GCCGTGGAGGAAAACCTTAGTTCCTATTCCTTAGACAGAAGAGTGACACCCGCCTCTGAG
ACCCTAGAAGACCCTTGCAGGACAGAGTCCCAGCACAAAGCGGAGACTCCGCACGGAGCC
GAGGAAGAATGCAAAGCGGAGACTCCGCACGGAGCCGAGGAGGAATGCCGGCACGGTGGG
GTCTGTGCTCCCGCAGCAGTGGCCACTTCGCCTCCTGGTGCAATCCCTAAGGAAGCCTGC
GGAGGAGCACCCCTGCAGGGTCTGCCTGGCGAAGCCCTGGGCTGCCCTGCGGGTGTGGGC
ACCCCCGTGCCAGCAGATGGCACTCAGACCCTTACCTGTGCACACACCTCTGCTCCTGAG
AGCACAGCCCCAACCAACCACCTGGTGGCTGGCAGGGCCATGACCCTGAGTCCTCAGGAA
GAAGTGGCTGCAGGCCAAATGGCCAGCTCCTCGAGGAGCGGACCTGTAAAACTAGAATTT
GATGTATCTGATGGCGCCACCAGCAAAAGGGCACCCCCACCAAGGAGACTGGGAGAGAGG
TCCGGCCTCAAGCCTCCCTTGAGGAAAGCAGCAGTGAGGCAGCAAAAGGCCCCGCAGGAG
GTGGAGGAGGACGACGGTAGGAGCGGAGCAGGAGAGGACCCCCCCATGCCAGCTTCTCGG
GGCTCTTACCACCTCGACTGGGACAAAATGGATGACCCAAACTTCATCCCGTTCGGAGGT
GACACCAAGTCTGGTTGCAGTGAGGCCCAGCCCCCAGAAAGCCCTGAGACCAGGCTGGGC
CAGCCAGCGGCTGAACAGTTGCATGCTGGGCCTGCCACGGAGGAGCCAGGTCCCTGTCTG
AGCCAGCAGCTGCATTCAGCCTCAGCGGAGGACACGCCTGTGGTGCAGTTGGCAGCCGAG
ACCCCAACAGCAGAGAGCAAGGAGAGAGCCTTGAACTCTGCCAGCACCTCGCTTCCCACA
AGCTGTCCAGGCAGTGAGCCAGTGCCCACCCATCAGCAGGGGCAGCCTGCCTTGGAGCTG
AAAGAGGAGAGCTTCAGAGACCCCGCTGAGGTTCTAGGCACGGGCGCGGAGGTGGATTAC
CTGGAGCAGTTTGGAACTTCCTCGTTTAAGGAGTCGGCCTTGAGGAAGCAGTCCTTATAC
CTCAAGTTCGACCCCCTCCTGAGGGACAGTCCTGGTAGACCAGTGCCCGTGGCCACCGAG
ACCAGCAGCATGCACGGTGCAAATGAGACTCCCTCAGGACGTCCGCGGGAAGCCAAGCTT
GTGGAGTTCGATTTCTTGGGAGCACTGGACATTCCTGTGCCAGGCCCACCCCCAGGTGTT
CCCGCGCCTGGGGGCCCACCCCTGTCCACCGGACCTATAGTGGACCTGCTCCAGTACAGC
CAGAAGGACCTGGATGCAGTGGTAAAGGCGACACAGGAGGAGAACCGGGAGCTGAGGAGC
AGGTGTGAGGAGCTCCACGGGAAGAACCTGGAACTGGGGAAGATCATGGACAGGTTCGAA
GAGGTTGTGTACCAGGCCATGGAGGAAGTTCAGAAGCAGAAGGAACTTTCCAAAGCTGAA
ATCCAGAAAGTTCTAAAAGAAAAAGACCAACTTACCACAGATCTGAACTCCATGGAGAAG
TCCTTCTCCGACCTCTTCAAGCGTTTTGAGAAACAGAAAGAGGTGATCGAGGGCTACCGC
AAGAACGAAGAGTCACTGAAGAAGTGCGTGGAGGATTACCTGGCAAGGATCACCCAGGAG
GGCCAGAGGTACCAAGCCCTGAAGGCCCACGCGGAGGAGAAGCTGCAGCTGGCAAACGAG
GAGATCGCCCAGGTCCGGAGCAAGGCCCAGGCGGAAGCGTTGGCCCTCCAGGCCAGCCTG
AGGAAGGAGCAGATGCGCATCCAGTCGCTGGAGAAGACAGTGGAGCAGAAGACTAAAGAG
AACGAGGAGCTGACCAGGATCTGCGACGACCTCATCTCCAAGATGGAGAAGATCTGA
GenBank Gene IDNot Available
GeneCard IDNot Available
GenAtlas IDNot Available
HGNC IDHGNC:11524
Chromosome Location4
LocusNot Available
References
  1. Still IH, Vince P, Cowell JK: The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics. 1999 Jun 1;58(2):165-70. 10366448
  2. McKeveney PJ, Hodges VM, Mullan RN, Maxwell P, Simpson D, Thompson A, Winter PC, Lappin TR, Maxwell AP: Characterization and localization of expression of an erythropoietin-induced gene, ERIC-1/TACC3, identified in erythroid precursor cells. Br J Haematol. 2001 Mar;112(4):1016-24. 11298601
  3. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. 15489334
  4. Gangisetty O, Lauffart B, Sondarva GV, Chelsea DM, Still IH: The transforming acidic coiled coil proteins interact with nuclear histone acetyltransferases. Oncogene. 2004 Apr 1;23(14):2559-63. 14767476
  5. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP: A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006 Oct;24(10):1285-92. Epub 2006 Sep 10. 16964243
  6. Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR 3rd: Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res. 2008 Mar;7(3):1346-51. doi: 10.1021/pr0705441. Epub 2008 Jan 26. 18220336
  7. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. 18669648
  8. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. 19413330
  9. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. 19690332
  10. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. 20068231
  11. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. 21269460
  12. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. 21406692