NameGuanine nucleotide-binding protein G(s) subunit alpha isoforms XLas
Synonyms
  • Adenylate cyclase-stimulating G alpha protein
  • Extra large alphas protein
  • GNAS1
  • XLalphas
Gene NameGNAS
OrganismHuman
Amino acid sequence
>lcl|BSEQ0009110|Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas
MGVRNCLYGNNMSGQRDIPPEIGEQPEQPPLEAPGAAAPGAGPSPAEEMETEPPHNEPIP
VENDGEACGPPEVSRPNFQVLNPAFREAGAHGSYSPPPEEAMPFEAEQPSLGGFWPTLEQ
PGFPSGVHAGLEAFGPALMEPGAFSGARPGLGGYSPPPEEAMPFEFDQPAQRGCSQLLLQ
VPDLAPGGPGAAGVPGAPPEEPQALRPAKAGSRGGYSPPPEETMPFELDGEGFGDDSPPP
GLSRVIAQVDGSSQFAAVAASSAVRLTPAANAPPLWVPGAIGSPSQEAVRPPSNFTGSSP
WMEISGPPFEIGSAPAGVDDTPVNMDSPPIALDGPPIKVSGAPDKRERAERPPVEEEAAE
MEGAADAAEGGKVPSPGYGSPAAGAASADTAARAAPAAPADPDSGATPEDPDSGTAPADP
DSGAFAADPDSGAAPAAPADPDSGAAPDAPADPDSGAAPDAPADPDAGAAPEAPAAPAAA
ETRAAHVAPAAPDAGAPTAPAASATRAAQVRRAASAAPASGARRKIHLRPPSPEIQAADP
PTPRPTRASAWRGKSESSRGRRVYYDEGVASSDDDSSGDESDDGTSGCLRWFQHRRNRRR
RKPQRNLLRNFLVQAFGGCFGRSESPQPKASRSLKVKKVPLAEKRRQMRKEALEKRAQKR
AEKKRSKLIDKQLQDEKMGYMCTHRLLLLGAGESGKSTIVKQMRILHVNGFNGEGGEEDP
QAARSNSDGEKATKVQDIKNNLKEAIETIVAAMSNLVPPVELANPENQFRVDYILSVMNV
PDFDFPPEFYEHAKALWEDEGVRACYERSNEYQLIDCAQYFLDKIDVIKQADYVPSDQDL
LRCRVLTSGIFETKFQVDKVNFHMFDVGGQRDERRKWIQCFNDVTAIIFVVASSSYNMVI
REDNQTNRLQEALNLFKSIWNNRWLRTISVILFLNKQDLLAEKVLAGKSKIEDYFPEFAR
YTTPEDATPEPGEDPRVTRAKYFIRDEFLRISTASGDGRHYCYPHFTCAVDTENIRRVFN
DCRDIIQRMHLRQYELL
Number of residues1037
Molecular Weight111023.29
Theoretical pINot Available
GO Classification
Functions
  • insulin-like growth factor receptor binding
  • D1 dopamine receptor binding
  • ionotropic glutamate receptor binding
  • G-protein beta/gamma-subunit complex binding
  • beta-2 adrenergic receptor binding
  • signal transducer activity
  • corticotropin-releasing hormone receptor 1 binding
  • GTP binding
  • mu-type opioid receptor binding
  • GTPase activity
  • metal ion binding
Processes
  • developmental growth
  • embryonic cranial skeleton morphogenesis
  • endochondral ossification
  • positive regulation of osteoclast differentiation
  • multicellular organism growth
  • hair follicle placode formation
  • energy reserve metabolic process
  • sensory perception of chemical stimulus
  • cognition
  • platelet aggregation
  • adenylate cyclase-activating dopamine receptor signaling pathway
  • adenylate cyclase-activating G-protein coupled receptor signaling pathway
  • genetic imprinting
  • bone development
  • response to drug
  • post-embryonic body morphogenesis
  • tissue homeostasis
  • DNA methylation
  • positive regulation of osteoblast differentiation
  • embryonic hindlimb morphogenesis
  • cartilage development
Components
  • cytosol
  • extracellular exosome
  • dendrite
  • membrane
  • heterotrimeric G-protein complex
General FunctionSignal transducer activity
Specific FunctionGuanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP. GNAS functions downstream of several GPCRs, including beta-adrenergic receptors. XLas isoforms interact with the same set of receptors as GNAS isoforms (By similarity).
Pfam Domain Function
Transmembrane RegionsNot Available
GenBank Protein IDNot Available
UniProtKB IDQ5JWF2
UniProtKB Entry NameGNAS1_HUMAN
Cellular LocationCell membrane
Gene sequenceNot Available
GenBank Gene IDNot Available
GeneCard IDNot Available
GenAtlas IDNot Available
HGNC IDHGNC:4392
Chromosome LocationNot Available
LocusNot Available
References
  1. Deloukas P, Matthews LH, Ashurst J, Burton J, Gilbert JG, Jones M, Stavrides G, Almeida JP, Babbage AK, Bagguley CL, Bailey J, Barlow KF, Bates KN, Beard LM, Beare DM, Beasley OP, Bird CP, Blakey SE, Bridgeman AM, Brown AJ, Buck D, Burrill W, Butler AP, Carder C, Carter NP, Chapman JC, Clamp M, Clark G, Clark LN, Clark SY, Clee CM, Clegg S, Cobley VE, Collier RE, Connor R, Corby NR, Coulson A, Coville GJ, Deadman R, Dhami P, Dunn M, Ellington AG, Frankland JA, Fraser A, French L, Garner P, Grafham DV, Griffiths C, Griffiths MN, Gwilliam R, Hall RE, Hammond S, Harley JL, Heath PD, Ho S, Holden JL, Howden PJ, Huckle E, Hunt AR, Hunt SE, Jekosch K, Johnson CM, Johnson D, Kay MP, Kimberley AM, King A, Knights A, Laird GK, Lawlor S, Lehvaslaiho MH, Leversha M, Lloyd C, Lloyd DM, Lovell JD, Marsh VL, Martin SL, McConnachie LJ, McLay K, McMurray AA, Milne S, Mistry D, Moore MJ, Mullikin JC, Nickerson T, Oliver K, Parker A, Patel R, Pearce TA, Peck AI, Phillimore BJ, Prathalingam SR, Plumb RW, Ramsay H, Rice CM, Ross MT, Scott CE, Sehra HK, Shownkeen R, Sims S, Skuce CD, Smith ML, Soderlund C, Steward CA, Sulston JE, Swann M, Sycamore N, Taylor R, Tee L, Thomas DW, Thorpe A, Tracey A, Tromans AC, Vaudin M, Wall M, Wallis JM, Whitehead SL, Whittaker P, Willey DL, Williams L, Williams SA, Wilming L, Wray PW, Hubbard T, Durbin RM, Bentley DR, Beck S, Rogers J: The DNA sequence and comparative analysis of human chromosome 20. Nature. 2001 Dec 20-27;414(6866):865-71. 11780052
  2. Hayward BE, Bonthron DT: An imprinted antisense transcript at the human GNAS1 locus. Hum Mol Genet. 2000 Mar 22;9(5):835-41. 10749992
  3. Hayward BE, Kamiya M, Strain L, Moran V, Campbell R, Hayashizaki Y, Bonthron DT: The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10038-43. 9707596
  4. Nekrutenko A, Wadhawan S, Goetting-Minesky P, Makova KD: Oscillating evolution of a mammalian locus with overlapping reading frames: an XLalphas/ALEX relay. PLoS Genet. 2005 Aug;1(2):e18. Epub 2005 Aug 12. 16110341
  5. Linglart A, Carel JC, Garabedian M, Le T, Mallet E, Kottler ML: GNAS1 lesions in pseudohypoparathyroidism Ia and Ic: genotype phenotype relationship and evidence of the maternal transmission of the hormonal resistance. J Clin Endocrinol Metab. 2002 Jan;87(1):189-97. 11788646
  6. Abramowitz J, Grenet D, Birnbaumer M, Torres HN, Birnbaumer L: XLalphas, the extra-long form of the alpha-subunit of the Gs G protein, is significantly longer than suspected, and so is its companion Alex. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8366-71. Epub 2004 May 17. 15148396
  7. Liu J, Litman D, Rosenberg MJ, Yu S, Biesecker LG, Weinstein LS: A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest. 2000 Nov;106(9):1167-74. 11067869
  8. Bastepe M, Lane AH, Juppner H: Paternal uniparental isodisomy of chromosome 20q--and the resulting changes in GNAS1 methylation--as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet. 2001 May;68(5):1283-9. Epub 2001 Apr 9. 11294659
  9. Wu WI, Schwindinger WF, Aparicio LF, Levine MA: Selective resistance to parathyroid hormone caused by a novel uncoupling mutation in the carboxyl terminus of G alpha(s). A cause of pseudohypoparathyroidism type Ib. J Biol Chem. 2001 Jan 5;276(1):165-71. 11029463
  10. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. 20068231
  11. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. 21269460
  12. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. 24275569
  13. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. 25944712
  14. Freson K, Hoylaerts MF, Jaeken J, Eyssen M, Arnout J, Vermylen J, Van Geet C: Genetic variation of the extra-large stimulatory G protein alpha-subunit leads to Gs hyperfunction in platelets and is a risk factor for bleeding. Thromb Haemost. 2001 Sep;86(3):733-8. 11583302
  15. Jan de Beur S, Ding C, Germain-Lee E, Cho J, Maret A, Levine MA: Discordance between genetic and epigenetic defects in pseudohypoparathyroidism type 1b revealed by inconsistent loss of maternal imprinting at GNAS1. Am J Hum Genet. 2003 Aug;73(2):314-22. Epub 2003 Jul 11. 12858292
  16. Freson K, Jaeken J, Van Helvoirt M, de Zegher F, Wittevrongel C, Thys C, Hoylaerts MF, Vermylen J, Van Geet C: Functional polymorphisms in the paternally expressed XLalphas and its cofactor ALEX decrease their mutual interaction and enhance receptor-mediated cAMP formation. Hum Mol Genet. 2003 May 15;12(10):1121-30. 12719376
  17. Fragoso MC, Domenice S, Latronico AC, Martin RM, Pereira MA, Zerbini MC, Lucon AM, Mendonca BB: Cushing's syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol Metab. 2003 May;88(5):2147-51. 12727968
  18. Bastepe M, Frohlich LF, Hendy GN, Indridason OS, Josse RG, Koshiyama H, Korkko J, Nakamoto JM, Rosenbloom AL, Slyper AH, Sugimoto T, Tsatsoulis A, Crawford JD, Juppner H: Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest. 2003 Oct;112(8):1255-63. 14561710
  19. Linglart A, Gensure RC, Olney RC, Juppner H, Bastepe M: A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet. 2005 May;76(5):804-14. Epub 2005 Mar 30. 15800843
  20. Bastepe M, Frohlich LF, Linglart A, Abu-Zahra HS, Tojo K, Ward LM, Juppner H: Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet. 2005 Jan;37(1):25-7. Epub 2004 Dec 12. 15592469