NameRAC-beta serine/threonine-protein kinase
Synonyms
  • 2.7.11.1
  • PKB beta
  • Protein kinase Akt-2
  • Protein kinase B beta
  • RAC-PK-beta
Gene NameAKT2
OrganismHuman
Amino acid sequence
>lcl|BSEQ0002331|RAC-beta serine/threonine-protein kinase
MNEVSVIKEGWLHKRGEYIKTWRPRYFLLKSDGSFIGYKERPEAPDQTLPPLNNFSVAEC
QLMKTERPRPNTFVIRCLQWTTVIERTFHVDSPDEREEWMRAIQMVANSLKQRAPGEDPM
DYKCGSPSDSSTTEEMEVAVSKARAKVTMNDFDYLKLLGKGTFGKVILVREKATGRYYAM
KILRKEVIIAKDEVAHTVTESRVLQNTRHPFLTALKYAFQTHDRLCFVMEYANGGELFFH
LSRERVFTEERARFYGAEIVSALEYLHSRDVVYRDIKLENLMLDKDGHIKITDFGLCKEG
ISDGATMKTFCGTPEYLAPEVLEDNDYGRAVDWWGLGVVMYEMMCGRLPFYNQDHERLFE
LILMEEIRFPRTLSPEAKSLLAGLLKKDPKQRLGGGPSDAKEVMEHRFFLSINWQDVVQK
KLLPPFKPQVTSEVDTRYFDDEFTAQSITITPPDRYDSLGLLELDQRTHFPQFSYSASIR
E
Number of residues481
Molecular Weight55768.32
Theoretical pI6.31
GO Classification
Functions
  • ATP binding
  • protein serine/threonine kinase activity
Processes
  • protein kinase B signaling
  • positive regulation of glucose import in response to insulin stimulus
  • cellular response to insulin stimulus
  • carbohydrate transport
  • positive regulation of glucose metabolic process
  • regulation of cell migration
  • positive regulation of glycogen biosynthetic process
  • response to osmotic stress
  • negative regulation of plasma membrane long-chain fatty acid transport
  • mammary gland epithelial cell differentiation
  • glucose metabolic process
  • fat cell differentiation
  • glycogen biosynthetic process
  • cellular protein modification process
  • positive regulation of protein phosphorylation
  • intracellular protein transmembrane transport
  • positive regulation of vesicle fusion
  • positive regulation of cell migration
  • negative regulation of RNA splicing
  • positive regulation of protein targeting to membrane
  • insulin receptor signaling pathway
  • peripheral nervous system myelin maintenance
  • positive regulation of nitric oxide biosynthetic process
  • negative regulation of cysteine-type endopeptidase activity involved in apoptotic process
  • positive regulation of positive chemotaxis
  • cellular response to organic cyclic compound
  • positive regulation of peptidyl-serine phosphorylation
  • positive regulation of signal transduction
  • regulation of translation
  • positive regulation of transcription from RNA polymerase II promoter
  • regulation of cell cycle arrest
  • signal transduction
  • positive regulation of cell motility
  • membrane organization
  • response to muscle activity
  • activation of GTPase activity
  • protein localization to plasma membrane
  • positive regulation of fatty acid beta-oxidation
  • response to nutrient levels
  • positive regulation of glucose import
Components
  • plasma membrane
  • ruffle membrane
  • cytosol
  • insulin-responsive compartment
  • early endosome
  • nucleoplasm
  • cell cortex
  • nucleus
General FunctionProtein serine/threonine kinase activity
Specific FunctionAKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development.One of the few specific substrates of AKT2 identified recently is PITX2. Phosphorylation of PITX2 impairs its association with the CCND1 mRNA-stabilizing complex thus shortening the half-life of CCND1. AKT2 seems also to be the principal isoform responsible of the regulation of glucose uptake. Phosphorylates C2CD5 on 'Ser-197' during insulin-stimulated adipocytes. AKT2 is also specifically involved in skeletal muscle differentiation, one of its substrates in this process being ANKRD2. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. Phosphorylates CLK2 on 'Thr-343'.
Pfam Domain Function
Transmembrane RegionsNot Available
GenBank Protein ID337491
UniProtKB IDP31751
UniProtKB Entry NameAKT2_HUMAN
Cellular LocationCytoplasm
Gene sequence
>lcl|BSEQ0002330|1446 bp
ATGAATGAGGTGTCTGTCATCAAAGAAGGCTGGCTCCACAAGCGTGGTGAATACATCAAG
ACCTGGAGGCCACGGTACTTCCTGCTGAAGAGCGACGGCTCCTTCATTGGGTACAAGGAG
AGGCCCGAGGCCCCTGATCAGACTCTACCCCCCTTAAACAACTTCTCCGTAGCAGAATGC
CAGCTGATGAAGACCGAGAGGCCGCGACCCAACACCTTTGTCATACGCTGCCTGCAGTGG
ACCACAGTCATCGAGAGGACCTTCCACGTGGATTCTCCAGACGAGAGGGAGGAGTGGATG
CGGGCCATCCAGATGGTCGCCAACAGCCTCAAGCAGCGGGCCCCAGGCGAGGACCCCATG
GACTACAAGTGTGGCTCCCCCAGTGACTCCTCCACGACTGAGGAGATGGAAGTGGCGGTC
AGCAAGGCACGGGCTAAAGTGACCATGAATGACTTCGACTATCTCAAACTCCTTGGCAAG
GGAACCTTTGGCAAAGTCATCCTGGTGCGGGAGAAGGCCACTGGCCGCTACTACGCCATG
AAGATCCTGCGAAAGGAAGTCATCATTGCCAAGGATGAAGTCGCTCACACAGTCACCGAG
AGCCGGGTCCTCCAGAACACCAGGCACCCGTTCCTCACTGCGCTGAAGTATGCCTTCCAG
ACCCACGACCGCCTGTGCTTTGTGATGGAGTATGCCAACGGGGGTGAGCTGTTCTTCCAC
CTGTCCCGGGAGCGTGTCTTCACAGAGGAGCGGGCCCGGTTTTATGGTGCAGAGATTGTC
TCGGCTCTTGAGTACTTGCACTCGCGGGACGTGGTATACCGCGACATCAAGCTGGAAAAC
CTCATGCTGGACAAAGATGGCCACATCAAGATCACTGACTTTGGCCTCTGCAAAGAGGGC
ATCAGTGACGGGGCCACCATGAAAACCTTCTGTGGGACCCCGGAGTACCTGGCGCCTGAG
GTGCTGGAGGACAATGACTATGGCCGGGCCGTGGACTGGTGGGGGCTGGGTGTGGTCATG
TACGAGATGATGTGCGGCCGCCTGCCCTTCTACAACCAGGACCACGAGCGCCTCTTCGAG
CTCATCCTCATGGAAGAGATCCGCTTCCCGCGCACGCTCAGCCCCGAGGCCAAGTCCCTG
CTTGCTGGGCTGCTTAAGAAGGACCCCAAGCAGAGGCTTGGTGGGGGGCCCAGCGATGCC
AAGGAGGTCATGGAGCACAGGTTCTTCCTCAGCATCAACTGGCAGGACGTGGTCCAGAAG
AAGCTCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGTCGACACAAGGTACTTCGAT
GATGAATTTACCGCCCAGTCCATCACAATCACACCCCCTGACCGCTATGACAGCCTGGGC
TTACTGGAGCTGGACCAGCGGACCCACTTCCCCCAGTTCTCCTACTCGGCCAGCATCCGC
GAGTGA
GenBank Gene IDM77198
GeneCard IDNot Available
GenAtlas IDAKT2
HGNC IDHGNC:392
Chromosome LocationNot Available
Locus19q13.1-q13.2
References
  1. Jones PF, Jakubowicz T, Hemmings BA: Molecular cloning of a second form of rac protein kinase. Cell Regul. 1991 Dec;2(12):1001-9. 1801921
  2. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR: AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9267-71. 1409633
  3. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. 14702039
  4. Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, Hellsten U, Goodstein D, Couronne O, Tran-Gyamfi M, Aerts A, Altherr M, Ashworth L, Bajorek E, Black S, Branscomb E, Caenepeel S, Carrano A, Caoile C, Chan YM, Christensen M, Cleland CA, Copeland A, Dalin E, Dehal P, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Garcia C, Georgescu AM, Glavina T, Gomez M, Gonzales E, Groza M, Hammon N, Hawkins T, Haydu L, Ho I, Huang W, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Larionov V, Leem SH, Lopez F, Lou Y, Lowry S, Malfatti S, Martinez D, McCready P, Medina C, Morgan J, Nelson K, Nolan M, Ovcharenko I, Pitluck S, Pollard M, Popkie AP, Predki P, Quan G, Ramirez L, Rash S, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, She X, Smith D, Slezak T, Solovyev V, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wagner M, Wheeler J, Wu K, Xie G, Yang J, Dubchak I, Furey TS, DeJong P, Dickson M, Gordon D, Eichler EE, Pennacchio LA, Richardson P, Stubbs L, Rokhsar DS, Myers RM, Rubin EM, Lucas SM: The DNA sequence and biology of human chromosome 19. Nature. 2004 Apr 1;428(6982):529-35. 15057824
  5. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. 15489334
  6. Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR: Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J. 1998 Apr 1;331 ( Pt 1):299-308. 9512493
  7. Laine J, Kunstle G, Obata T, Sha M, Noguchi M: The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell. 2000 Aug;6(2):395-407. 10983986
  8. Baer K, Lisinski I, Gompert M, Stuhlmann D, Schmolz K, Klein HW, Al-Hasani H: Activation of a GST-tagged AKT2/PKBbeta. Biochim Biophys Acta. 2005 Oct 10;1725(3):340-7. Epub 2005 Apr 20. 15890450
  9. Fritzius T, Burkard G, Haas E, Heinrich J, Schweneker M, Bosse M, Zimmermann S, Frey AD, Caelers A, Bachmann AS, Moelling K: A WD-FYVE protein binds to the kinases Akt and PKCzeta/lambda. Biochem J. 2006 Oct 1;399(1):9-20. 16792529
  10. Zhang X, Zhang S, Yamane H, Wahl R, Ali A, Lofgren JA, Kendall RL: Kinetic mechanism of AKT/PKB enzyme family. J Biol Chem. 2006 May 19;281(20):13949-56. Epub 2006 Mar 15. 16540465
  11. Heron-Milhavet L, Mamaeva D, Rochat A, Lamb NJ, Fernandez A: Akt2 is implicated in skeletal muscle differentiation and specifically binds Prohibitin2/REA. J Cell Physiol. 2008 Jan;214(1):158-65. 17565718
  12. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. 18669648
  13. Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M: The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell. 2009 Dec;17(6):800-10. doi: 10.1016/j.devcel.2009.09.007. 20059950
  14. Ding J, Du K: ClipR-59 interacts with Akt and regulates Akt cellular compartmentalization. Mol Cell Biol. 2009 Mar;29(6):1459-71. doi: 10.1128/MCB.00754-08. Epub 2009 Jan 12. 19139280
  15. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. 19690332
  16. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, Hur L, Grabiner BC, Lin X, Darnay BG, Lin HK: The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 2009 Aug 28;325(5944):1134-8. doi: 10.1126/science.1175065. 19713527
  17. Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, Nagahiro S: Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol. 2010 Mar;12(3):221-32. doi: 10.1093/neuonc/nop026. Epub 2009 Dec 21. 20167810
  18. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. 21269460
  19. Hers I, Vincent EE, Tavare JM: Akt signalling in health and disease. Cell Signal. 2011 Oct;23(10):1515-27. doi: 10.1016/j.cellsig.2011.05.004. Epub 2011 May 17. 21620960
  20. Heron-Milhavet L, Khouya N, Fernandez A, Lamb NJ: Akt1 and Akt2: differentiating the aktion. Histol Histopathol. 2011 May;26(5):651-62. 21432781
  21. Cenni V, Bavelloni A, Beretti F, Tagliavini F, Manzoli L, Lattanzi G, Maraldi NM, Cocco L, Marmiroli S: Ankrd2/ARPP is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H(2)O(2). Mol Biol Cell. 2011 Aug 15;22(16):2946-56. doi: 10.1091/mbc.E10-11-0928. Epub 2011 Jul 7. 21737686
  22. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol Cell Proteomics. 2012 Jun;11(6):M111.015131. doi: 10.1074/mcp.M111.015131. Epub 2012 Jan 5. 22223895
  23. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. 24275569
  24. Yang J, Cron P, Thompson V, Good VM, Hess D, Hemmings BA, Barford D: Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell. 2002 Jun;9(6):1227-40. 12086620
  25. Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D: Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol. 2002 Dec;9(12):940-4. 12434148
  26. Huang X, Begley M, Morgenstern KA, Gu Y, Rose P, Zhao H, Zhu X: Crystal structure of an inactive Akt2 kinase domain. Structure. 2003 Jan;11(1):21-30. 12517337
  27. Auguin D, Barthe P, Auge-Senegas MT, Stern MH, Noguchi M, Roumestand C: Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt). Interaction with inositol phosphates. J Biomol NMR. 2004 Feb;28(2):137-55. 14755158
  28. Davies TG, Verdonk ML, Graham B, Saalau-Bethell S, Hamlett CC, McHardy T, Collins I, Garrett MD, Workman P, Woodhead SJ, Jhoti H, Barford D: A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. J Mol Biol. 2007 Mar 30;367(3):882-94. Epub 2007 Jan 9. 17275837
  29. Heerding DA, Rhodes N, Leber JD, Clark TJ, Keenan RM, Lafrance LV, Li M, Safonov IG, Takata DT, Venslavsky JW, Yamashita DS, Choudhry AE, Copeland RA, Lai Z, Schaber MD, Tummino PJ, Strum SL, Wood ER, Duckett DR, Eberwein D, Knick VB, Lansing TJ, McConnell RT, Zhang S, Minthorn EA, Concha NO, Warren GL, Kumar R: Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H- imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. J Med Chem. 2008 Sep 25;51(18):5663-79. doi: 10.1021/jm8004527. 18800763
  30. Rouse MB, Seefeld MA, Leber JD, McNulty KC, Sun L, Miller WH, Zhang S, Minthorn EA, Concha NO, Choudhry AE, Schaber MD, Heerding DA: Aminofurazans as potent inhibitors of AKT kinase. Bioorg Med Chem Lett. 2009 Mar 1;19(5):1508-11. doi: 10.1016/j.bmcl.2009.01.002. Epub 2009 Jan 9. 19179070
  31. George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, Soos MA, Murgatroyd PR, Williams RM, Acerini CL, Dunger DB, Barford D, Umpleby AM, Wareham NJ, Davies HA, Schafer AJ, Stoffel M, O'Rahilly S, Barroso I: A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004 May 28;304(5675):1325-8. 15166380
  32. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8. 17344846
  33. Semple RK, Sleigh A, Murgatroyd PR, Adams CA, Bluck L, Jackson S, Vottero A, Kanabar D, Charlton-Menys V, Durrington P, Soos MA, Carpenter TA, Lomas DJ, Cochran EK, Gorden P, O'Rahilly S, Savage DB: Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest. 2009 Feb;119(2):315-22. doi: 10.1172/JCI37432. Epub 2009 Jan 26. 19164855
  34. Hussain K, Challis B, Rocha N, Payne F, Minic M, Thompson A, Daly A, Scott C, Harris J, Smillie BJ, Savage DB, Ramaswami U, De Lonlay P, O'Rahilly S, Barroso I, Semple RK: An activating mutation of AKT2 and human hypoglycemia. Science. 2011 Oct 28;334(6055):474. doi: 10.1126/science.1210878. Epub 2011 Oct 6. 21979934