NameEphrin type-A receptor 2
Synonyms
  • 2.7.10.1
  • ECK
  • Epithelial cell kinase
  • Tyrosine-protein kinase receptor ECK
Gene NameEPHA2
OrganismHuman
Amino acid sequence
>lcl|BSEQ0037092|Ephrin type-A receptor 2
MELQAARACFALLWGCALAAAAAAQGKEVVLLDFAAAGGELGWLTHPYGKGWDLMQNIMN
DMPIYMYSVCNVMSGDQDNWLRTNWVYRGEAERIFIELKFTVRDCNSFPGGASSCKETFN
LYYAESDLDYGTNFQKRLFTKIDTIAPDEITVSSDFEARHVKLNVEERSVGPLTRKGFYL
AFQDIGACVALLSVRVYYKKCPELLQGLAHFPETIAGSDAPSLATVAGTCVDHAVVPPGG
EEPRMHCAVDGEWLVPIGQCLCQAGYEKVEDACQACSPGFFKFEASESPCLECPEHTLPS
PEGATSCECEEGFFRAPQDPASMPCTRPPSAPHYLTAVGMGAKVELRWTPPQDSGGREDI
VYSVTCEQCWPESGECGPCEASVRYSEPPHGLTRTSVTVSDLEPHMNYTFTVEARNGVSG
LVTSRSFRTASVSINQTEPPKVRLEGRSTTSLSVSWSIPPPQQSRVWKYEVTYRKKGDSN
SYNVRRTEGFSVTLDDLAPDTTYLVQVQALTQEGQGAGSKVHEFQTLSPEGSGNLAVIGG
VAVGVVLLLVLAGVGFFIHRRRKNQRARQSPEDVYFSKSEQLKPLKTYVDPHTYEDPNQA
VLKFTTEIHPSCVTRQKVIGAGEFGEVYKGMLKTSSGKKEVPVAIKTLKAGYTEKQRVDF
LGEAGIMGQFSHHNIIRLEGVISKYKPMMIITEYMENGALDKFLREKDGEFSVLQLVGML
RGIAAGMKYLANMNYVHRDLAARNILVNSNLVCKVSDFGLSRVLEDDPEATYTTSGGKIP
IRWTAPEAISYRKFTSASDVWSFGIVMWEVMTYGERPYWELSNHEVMKAINDGFRLPTPM
DCPSAIYQLMMQCWQQERARRPKFADIVSILDKLIRAPDSLKTLADFDPRVSIRLPSTSG
SEGVPFRTVSEWLESIKMQQYTEHFMAAGYTAIEKVVQMTNDDIKRIGVRLPGHQKRIAY
SLLGLKDQVNTVGIPI
Number of residues976
Molecular Weight108265.585
Theoretical pI6.05
GO Classification
Functions
  • ATP binding
  • transmembrane receptor protein tyrosine kinase activity
  • ephrin receptor activity
Processes
  • vasculogenesis
  • multicellular organismal development
  • activation of GTPase activity
  • cell chemotaxis
  • mammary gland epithelial cell proliferation
  • protein kinase B signaling
  • branching involved in mammary gland duct morphogenesis
  • angiogenesis
  • bone remodeling
  • cell adhesion
  • negative regulation of protein kinase B signaling
  • neural tube development
  • positive regulation of establishment of protein localization to plasma membrane
  • response to growth factor
  • regulation of angiogenesis
  • regulation of cell adhesion mediated by integrin
  • axon guidance
  • axial mesoderm formation
  • ephrin receptor signaling pathway
  • cell migration
  • lens fiber cell morphogenesis
  • viral process
  • intrinsic apoptotic signaling pathway in response to DNA damage
  • notochord cell development
  • keratinocyte differentiation
  • peptidyl-tyrosine phosphorylation
  • notochord formation
  • regulation of blood vessel endothelial cell migration
  • post-anal tail morphogenesis
  • regulation of ERK1 and ERK2 cascade
  • osteoblast differentiation
  • regulation of lamellipodium assembly
  • osteoclast differentiation
  • skeletal system development
Components
  • intracellular
  • focal adhesion
  • plasma membrane
  • lamellipodium membrane
  • cell surface
  • leading edge membrane
  • ruffle membrane
  • integral component of plasma membrane
General FunctionTransmembrane receptor protein tyrosine kinase activity
Specific FunctionReceptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis.
Pfam Domain Function
Transmembrane Regions538-558
GenBank Protein ID181944
UniProtKB IDP29317
UniProtKB Entry NameEPHA2_HUMAN
Cellular LocationCell membrane
Gene sequence
>lcl|BSEQ0019022|Ephrin type-A receptor 2 (EPHA2)
ATGGAGCTCCAGGCAGCCCGCGCCTGCTTCGCCCTGCTGTGGGGCTGTGCGCTGGCCGCG
GCCGCGGCGGCGCAGGGCAAGGAAGTGGTACTGCTGGACTTTGCTGCAGCTGGAGGGGAG
CTCGGCTGGCTCACACACCCGTATGGCAAAGGGTGGGACCTGATGCAGAACATCATGAAT
GACATGCCGATCTACATGTACTCCGTGTGCAACGTGATGTCTGGCGACCAGGACAACTGG
CTCCGCACCAACTGGGTGTACCGAGGAGAGGCTGAGCGTATCTTCATTGAGCTCAAGTTT
ACTGTACGTGACTGCAACAGCTTCCCTGGTGGCGCCAGCTCCTGCAAGGAGACTTTCAAC
CTCTACTATGCCGAGTCGGACCTGGACTACGGCACCAACTTCCAGAAGCGCCTGTTCACC
AAGATTGACACCATTGCGCCCGATGAGATCACCGTCAGCAGCGACTTCGAGGCACGCCAC
GTGAAGCTGAACGTGGAGGAGCGCTCCGTGGGGCCGCTCACCCGCAAAGGCTTCTACCTG
GCCTTCCAGGATATCGGTGCCTGTGTGGCGCTGCTCTCCGTCCGTGTCTACTACAAGAAG
TGCCCCGAGCTGCTGCAGGGCCTGGCCCACTTCCCTGAGACCATCGCCGGCTCTGATGCA
CCTTCCCTGGCCACTGTGGCCGGCACCTGTGTGGACCATGCCGTGGTGCCACCGGGGGGT
GAAGAGCCCCGTATGCACTGTGCAGTGGATGGCGAGTGGCTGGTGCCCATTGGGCAGTGC
CTGTGCCAGGCAGGCTACGAGAAGGTGGAGGATGCCTGCCAGGCCTGCTCGCCTGGATTT
TTTAAGTTTGAGGCATCTGAGAGCCCCTGCTTGGAGTGCCCTGAGCACACGCTGCCATCC
CCTGAGGGTGCCACCTCCTGCGAGTGTGAGGAAGGCTTCTTCCGGGCACCTCAGGACCCA
GCGTCGATGCCTTGCACACGACCCCCCTCCGCCCCACACTACCTCACAGCCGTGGGCATG
GGTGCCAAGGTGGAGCTGCGCTGGACGCCCCCTCAGGACAGCGGGGGCCGCGAGGACATT
GTCTACAGCGTCACCTGCGAACAGTGCTGGCCCGAGTCTGGGGAATGCGGGCCGTGTGAG
GCCAGTGTGCGCTACTCGGAGCCTCCTCACGGACTGACCCGCACCAGTGTGACAGTGAGC
GACCTGGAGCCCCACATGAACTACACCTTCACCGTGGAGGCCCGCAATGGCGTCTCAGGC
CTGGTAACCAGCCGCAGCTTCCGTACTGCCAGTGTCAGCATCAACCAGACAGAGCCCCCC
AAGGTGAGGCTGGAGGGCCGCAGCACCACCTCGCTTAGCGTCTCCTGGAGCATCCCCCCG
CCGCAGCAGAGCCGAGTGTGGAAGTACGAGGTCACTTACCGCAAGAAGGGAGACTCCAAC
AGCTACAATGTGCGCCGCACCGAGGGTTTCTCCGTGACCCTGGACGACCTGGCCCCAGAC
ACCACCTACCTGGTCCAGGTGCAGGCACTGACGCAGGAGGGCCAGGGGGCCGGCAGCAAG
GTGCACGAATTCCAGACGCTGTCCCCGGAGGGATCTGGCAACTTGGCGGTGATTGGCGGC
GTGGCTGTCGGTGTGGTCCTGCTTCTGGTGCTGGCAGGAGTTGGCTTCTTTATCCACCGC
AGGAGGAAGAACCAGCGTGCCCGCCAGTCCCCGGAGGACGTTTACTTCTCCAAGTCAGAA
CAACTGAAGCCCCTGAAGACATACGTGGACCCCCACACATATGAGGACCCCAACCAGGCT
GTGTTGAAGTTCACTACCGAGATCCATCCATCCTGTGTCACTCGGCAGAAGGTGATCGGA
GCAGGAGAGTTTGGGGAGGTGTACAAGGGCATGCTGAAGACATCCTCGGGGAAGAAGGAG
GTGCCGGTGGCCATCAAGACGCTGAAAGCCGGCTACACAGAGAAGCAGCGAGTGGACTTC
CTCGGCGAGGCCGGCATCATGGGCCAGTTCAGCCACCACAACATCATCCGCCTAGAGGGC
GTCATCTCCAAATACAAGCCCATGATGATCATCACTGAGTACATGGAGAATGGGGCCCTG
GACAAGTTCCTTCGGGAGAAGGATGGCGAGTTCAGCGTGCTGCAGCTGGTGGGCATGCTG
CGGGGCATCGCAGCTGGCATGAAGTACCTGGCCAACATGAACTATGTGCACCGTGACCTG
GCTGCCCGCAACATCCTCGTCAACAGCAACCTGGTCTGCAAGGTGTCTGACTTTGGCCTG
TCCCGCGTGCTGGAGGACGACCCCGAGGCCACCTACACCACCAGTGGCGGCAAGATCCCC
ATCCGCTGGACCGCCCCGGAGGCCATTTCCTACCGGAAGTTCACCTCTGCCAGCGACGTG
TGGAGCTTTGGCATTGTCATGTGGGAGGTGATGACCTATGGCGAGCGGCCCTACTGGGAG
TTGTCCAACCACGAGGTGATGAAAGCCATCAATGATGGCTTCCGGCTCCCCACACCCATG
GACTGCCCCTCCGCCATCTACCAGCTCATGATGCAGTGCTGGCAGCAGGAGCGTGCCCGC
CGCCCCAAGTTCGCTGACATCGTCAGCATCCTGGACAAGCTCATTCGTGCCCCTGACTCC
CTCAAGACCCTGGCTGACTTTGACCCCCGCGTGTCTATCCGGCTCCCCAGCACGAGCGGC
TCGGAGGGGGTGCCCTTCCGCACGGTGTCCGAGTGGCTGGAGTCCATCAAGATGCAGCAG
TATACGGAGCACTTCATGGCGGCCGGCTACACTGCCATCGAGAAGGTGGTGCAGATGACC
AACGACGACATCAAGAGGATTGGGGTGCGGCTGCCCGGCCACCAGAAGCGCATCGCCTAC
AGCCTGCTGGGACTCAAGGACCAGGTGAACACTGTGGGGATCCCCATCTGA
GenBank Gene IDM59371
GeneCard IDNot Available
GenAtlas IDEPHA2
HGNC IDHGNC:3386
Chromosome Location1
Locus1p36
References
  1. Lindberg RA, Hunter T: cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol. 1990 Dec;10(12):6316-24. 2174105
  2. Jin P, Zhang J, Sumariwalla PF, Ni I, Jorgensen B, Crawford D, Phillips S, Feldmann M, Shepard HM, Paleolog EM: Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res Ther. 2008;10(4):R73. doi: 10.1186/ar2447. Epub 2008 Jul 1. 18593464
  3. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E: The DNA sequence and biological annotation of human chromosome 1. Nature. 2006 May 18;441(7091):315-21. 16710414
  4. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. 15489334
  5. Authors unspecified: Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. Cell. 1997 Aug 8;90(3):403-4. 9267020
  6. Miao H, Burnett E, Kinch M, Simon E, Wang B: Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol. 2000 Feb;2(2):62-9. 10655584
  7. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS: EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001 Mar 1;61(5):2301-6. 11280802
  8. Kikawa KD, Vidale DR, Van Etten RL, Kinch MS: Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem. 2002 Oct 18;277(42):39274-9. Epub 2002 Aug 6. 12167657
  9. Tanaka M, Kamata R, Sakai R: EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem. 2005 Dec 23;280(51):42375-82. Epub 2005 Oct 18. 16236711
  10. Liu DP, Wang Y, Koeffler HP, Xie D: Ephrin-A1 is a negative regulator in glioma through down-regulation of EphA2 and FAK. Int J Oncol. 2007 Apr;30(4):865-71. 17332925
  11. Zhuang G, Hunter S, Hwang Y, Chen J: Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. J Biol Chem. 2007 Jan 26;282(4):2683-94. Epub 2006 Nov 29. 17135240
  12. Zhang G, Njauw CN, Park JM, Naruse C, Asano M, Tsao H: EphA2 is an essential mediator of UV radiation-induced apoptosis. Cancer Res. 2008 Mar 15;68(6):1691-6. doi: 10.1158/0008-5472.CAN-07-2372. 18339848
  13. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007. 18691976
  14. Wykosky J, Palma E, Gibo DM, Ringler S, Turner CP, Debinski W: Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene. 2008 Dec 11;27(58):7260-73. doi: 10.1038/onc.2008.328. Epub 2008 Sep 15. 18794797
  15. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. 18669648
  16. Miao H, Li DQ, Mukherjee A, Guo H, Petty A, Cutter J, Basilion JP, Sedor J, Wu J, Danielpour D, Sloan AE, Cohen ML, Wang B: EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell. 2009 Jul 7;16(1):9-20. doi: 10.1016/j.ccr.2009.04.009. 19573808
  17. Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H: Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res. 2009 Feb;8(2):651-61. doi: 10.1021/pr8008012. 19159218
  18. Annamalai B, Liu X, Gopal U, Isaacs JS: Hsp90 is an essential regulator of EphA2 receptor stability and signaling: implications for cancer cell migration and metastasis. Mol Cancer Res. 2009 Jul;7(7):1021-32. doi: 10.1158/1541-7786.MCR-08-0582. Epub 2009 Jun 30. 19567782
  19. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15. 19369195
  20. Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, Katoh H: Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol. 2010 Aug 9;190(3):461-77. doi: 10.1083/jcb.201005141. Epub 2010 Aug 2. 20679435
  21. Lin S, Gordon K, Kaplan N, Getsios S: Ligand targeting of EphA2 enhances keratinocyte adhesion and differentiation via desmoglein 1. Mol Biol Cell. 2010 Nov 15;21(22):3902-14. doi: 10.1091/mbc.E10-03-0242. Epub 2010 Sep 22. 20861311
  22. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. 20068231
  23. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. 21269460
  24. Mercurio FA, Marasco D, Pirone L, Pedone EM, Pellecchia M, Leone M: Solution structure of the first Sam domain of Odin and binding studies with the EphA2 receptor. Biochemistry. 2012 Mar 13;51(10):2136-45. doi: 10.1021/bi300141h. Epub 2012 Mar 5. 22332920
  25. Hahn AS, Kaufmann JK, Wies E, Naschberger E, Panteleev-Ivlev J, Schmidt K, Holzer A, Schmidt M, Chen J, Konig S, Ensser A, Myoung J, Brockmeyer NH, Sturzl M, Fleckenstein B, Neipel F: The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi's sarcoma-associated herpesvirus. Nat Med. 2012 Jun;18(6):961-6. doi: 10.1038/nm.2805. 22635007
  26. Lee H, Bennett AM: Receptor protein tyrosine phosphatase-receptor tyrosine kinase substrate screen identifies EphA2 as a target for LAR in cell migration. Mol Cell Biol. 2013 Apr;33(7):1430-41. doi: 10.1128/MCB.01708-12. Epub 2013 Jan 28. 23358419
  27. Tiwari A, Schneider M, Fiorino A, Haider R, Okoniewski MJ, Roschitzki B, Uzozie A, Menigatti M, Jiricny J, Marra G: Early insights into the function of KIAA1199, a markedly overexpressed protein in human colorectal tumors. PLoS One. 2013 Jul 23;8(7):e69473. doi: 10.1371/journal.pone.0069473. Print 2013. 23936024
  28. Nowakowski J, Cronin CN, McRee DE, Knuth MW, Nelson CG, Pavletich NP, Rogers J, Sang BC, Scheibe DN, Swanson RV, Thompson DA: Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure. 2002 Dec;10(12):1659-67. 12467573
  29. Himanen JP, Goldgur Y, Miao H, Myshkin E, Guo H, Buck M, Nguyen M, Rajashankar KR, Wang B, Nikolov DB: Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Rep. 2009 Jul;10(7):722-8. doi: 10.1038/embor.2009.91. Epub 2009 Jun 12. 19525919
  30. Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M, Nikolov DB, Dhe-Paganon S: Architecture of Eph receptor clusters. Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10860-5. doi: 10.1073/pnas.1004148107. Epub 2010 May 26. 20505120
  31. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8. 17344846
  32. Shiels A, Bennett TM, Knopf HL, Maraini G, Li A, Jiao X, Hejtmancik JF: The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis. 2008;14:2042-55. Epub 2008 Nov 12. 19005574
  33. Zhang T, Hua R, Xiao W, Burdon KP, Bhattacharya SS, Craig JE, Shang D, Zhao X, Mackey DA, Moore AT, Luo Y, Zhang J, Zhang X: Mutations of the EPHA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum Mutat. 2009 May;30(5):E603-11. doi: 10.1002/humu.20995. 19306328
  34. Jun G, Guo H, Klein BE, Klein R, Wang JJ, Mitchell P, Miao H, Lee KE, Joshi T, Buck M, Chugha P, Bardenstein D, Klein AP, Bailey-Wilson JE, Gong X, Spector TD, Andrew T, Hammond CJ, Elston RC, Iyengar SK, Wang B: EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet. 2009 Jul;5(7):e1000584. doi: 10.1371/journal.pgen.1000584. Epub 2009 Jul 31. 19649315
  35. Park JE, Son AI, Hua R, Wang L, Zhang X, Zhou R: Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. PLoS One. 2012;7(5):e36564. doi: 10.1371/journal.pone.0036564. Epub 2012 May 3. 22570727