NamePotassium voltage-gated channel subfamily A member 2
Synonyms
  • NGK1
  • Voltage-gated K(+) channel HuKIV
  • Voltage-gated potassium channel HBK5
  • Voltage-gated potassium channel subunit Kv1.2
Gene NameKCNA2
OrganismHuman
Amino acid sequence
>lcl|BSEQ0008566|Potassium voltage-gated channel subfamily A member 2
MTVATGDPADEAAALPGHPQDTYDPEADHECCERVVINISGLRFETQLKTLAQFPETLLG
DPKKRMRYFDPLRNEYFFDRNRPSFDAILYYYQSGGRLRRPVNVPLDIFSEEIRFYELGE
EAMEMFREDEGYIKEEERPLPENEFQRQVWLLFEYPESSGPARIIAIVSVMVILISIVSF
CLETLPIFRDENEDMHGSGVTFHTYSNSTIGYQQSTSFTDPFFIVETLCIIWFSFEFLVR
FFACPSKAGFFTNIMNIIDIVAIIPYFITLGTELAEKPEDAQQGQQAMSLAILRVIRLVR
VFRIFKLSRHSKGLQILGQTLKASMRELGLLIFFLFIGVILFSSAVYFAEADERESQFPS
IPDAFWWAVVSMTTVGYGDMVPTTIGGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRE
TEGEEQAQYLQVTSCPKIPSSPDLKKSRSASTISKSDYMEIQEGVNNSNEDFREENLKTA
NCTLANTNYVNITKMLTDV
Number of residues499
Molecular Weight56716.21
Theoretical pINot Available
GO Classification
Functions
  • potassium channel activity
  • delayed rectifier potassium channel activity
  • voltage-gated potassium channel activity
Processes
  • protein homooligomerization
  • potassium ion transport
  • regulation of dopamine secretion
  • synaptic transmission
  • sensory perception of pain
  • potassium ion transmembrane transport
  • neuronal action potential
Components
  • axon
  • neuronal cell body membrane
  • plasma membrane
  • voltage-gated potassium channel complex
  • endoplasmic reticulum membrane
  • lamellipodium
  • juxtaparanode region of axon
  • cell junction
  • integral component of plasma membrane
  • axon terminus
  • dendrite
  • perikaryon
  • presynaptic membrane
  • lamellipodium membrane
General FunctionVoltage-gated potassium channel activity
Specific FunctionVoltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system. Prevents aberrant action potential firing and regulates neuronal output. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:19912772, PubMed:8495559, PubMed:11211111, PubMed:23769686). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, KCNA6, KCNA7, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel (PubMed:8495559, PubMed:20220134). Channel properties are modulated by cytoplasmic beta subunits that regulate the subcellular location of the alpha subunits and promote rapid inactivation of delayed rectifier potassium channels. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Homotetrameric KCNA2 forms a delayed-rectifier potassium channel that opens in response to membrane depolarization, followed by slow spontaneous channel closure (PubMed:19912772, PubMed:23769686). In contrast, a heteromultimer formed by KCNA2 and KCNA4 shows rapid inactivation (PubMed:8495559). Regulates neuronal excitability and plays a role as pacemaker in the regulation of neuronal action potentials (By similarity). KCNA2-containing channels play a presynaptic role and prevent hyperexcitability and aberrant action potential firing (By similarity). Response to toxins that are selective for KCNA2-containing potassium channels suggests that in Purkinje cells, dendritic subthreshold KCNA2-containing potassium channels prevent random spontaneous calcium spikes, suppressing dendritic hyperexcitability without hindering the generation of somatic action potentials, and thereby play an important role in motor coordination (By similarity). Plays a role in the induction of long-term potentiation of neuron excitability in the CA3 layer of the hippocampus (By similarity). May function as down-stream effector for G protein-coupled receptors and inhibit GABAergic inputs to basolateral amygdala neurons (By similarity). May contribute to the regulation of neurotransmitter release, such as gamma-aminobutyric acid (GABA) (By similarity). Contributes to the regulation of the axonal release of the neurotransmitter dopamine (By similarity). Reduced KCNA2 expression plays a role in the perception of neuropathic pain after peripheral nerve injury, but not acute pain (By similarity). Plays a role in the regulation of the time spent in non-rapid eye movement (NREM) sleep (By similarity).
Pfam Domain Function
Transmembrane Regions161-182 222-243 255-275 290-310 326-347 389-417
GenBank Protein IDNot Available
UniProtKB IDP16389
UniProtKB Entry NameKCNA2_HUMAN
Cellular LocationCell membrane
Gene sequence
>lcl|BSEQ0021704|Potassium voltage-gated channel subfamily A member 2 (KCNA2)
ATGACAGTGGCCACCGGAGACCCAGCAGACGAGGCTGCTGCCCTCCCTGGGCACCCACAG
GACACCTATGACCCAGAGGCAGACCACGAGTGCTGTGAGAGGGTGGTGATCAACATCTCA
GGGCTGCGGTTTGAGACCCAGCTAAAGACCTTAGCCCAGTTTCCAGAGACCCTCTTAGGG
GACCCAAAGAAACGAATGAGGTACTTTGACCCCCTCCGAAATGAGTACTTTTTCGATCGG
AACCGCCCTAGCTTTGATGCCATTTTGTACTACTACCAGTCAGGGGGCCGATTGAGGCGA
CCTGTGAATGTGCCCTTAGATATATTCTCTGAAGAAATTCGGTTTTATGAGCTGGGAGAA
GAAGCGATGGAGATGTTTCGGGAAGATGAAGGCTACATCAAGGAGGAAGAGCGTCCTCTG
CCTGAAAATGAGTTTCAGAGACAAGTGTGGCTTCTCTTTGAATACCCAGAGAGCTCAGGG
CCTGCCAGGATTATAGCTATTGTGTCTGTCATGGTGATTCTGATCTCAATTGTCAGCTTC
TGTCTGGAAACATTGCCCATCTTCCGGGATGAGAATGAAGACATGCATGGTAGTGGGGTG
ACCTTCCACACCTATTCCAACAGCACCATCGGGTACCAGCAGTCCACTTCCTTCACAGAC
CCTTTCTTCATTGTAGAGACACTCTGCATCATCTGGTTCTCCTTTGAATTCTTGGTGAGG
TTCTTTGCCTGTCCCAGCAAAGCCGGCTTCTTCACCAACATCATGAACATCATTGACATT
GTGGCCATCATCCCCTACTTCATCACCCTGGGGACAGAGTTGGCTGAGAAGCCAGAGGAC
GCTCAGCAAGGCCAGCAGGCCATGTCACTGGCCATCCTCCGTGTCATCCGGTTGGAACGC
AGACCTCTGCAAAGCCAGAAGAGTAAGCGGGGAAGGCAGCATCTGAACACCTCACATGAC
TGCACCTTAGGAATTAACCTAGTCGCGGGCATGACTGTACAGTGGACCAGGGCATCTGGT
CCTGATGACAGGCAGACACCAGCTGTAACTACATTGCACAGGATGTATTGA
GenBank Gene IDNot Available
GeneCard IDNot Available
GenAtlas IDNot Available
HGNC IDHGNC:6220
Chromosome Location1
LocusNot Available
References
  1. Ramaswami M, Gautam M, Kamb A, Rudy B, Tanouye MA, Mathew MK: Human potassium channel genes: Molecular cloning and functional expression. Mol Cell Neurosci. 1990 Dec;1(3):214-23. 19912772
  2. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. 14702039
  3. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E: The DNA sequence and biological annotation of human chromosome 1. Nature. 2006 May 18;441(7091):315-21. 16710414
  4. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. 15489334
  5. Po S, Roberds S, Snyders DJ, Tamkun MM, Bennett PB: Heteromultimeric assembly of human potassium channels. Molecular basis of a transient outward current? Circ Res. 1993 Jun;72(6):1326-36. 8495559
  6. Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P, Peles E: Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron. 1999 Dec;24(4):1037-47. 10624965
  7. Imbrici P, Tucker SJ, D'Adamo MC, Pessia M: Role of receptor protein tyrosine phosphatase alpha (RPTPalpha) and tyrosine phosphorylation in the serotonergic inhibition of voltage-dependent potassium channels. Pflugers Arch. 2000 Dec;441(2-3):257-62. 11211111
  8. Rasband MN, Trimmer JS: Subunit composition and novel localization of K+ channels in spinal cord. J Comp Neurol. 2001 Jan 1;429(1):166-76. 11086297
  9. Inda MC, DeFelipe J, Munoz A: Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2920-5. Epub 2006 Feb 10. 16473933
  10. Baranauskas G: Ionic channel function in action potential generation: current perspective. Mol Neurobiol. 2007 Apr;35(2):129-50. 17917103
  11. Peters CJ, Vaid M, Horne AJ, Fedida D, Accili EA: The molecular basis for the actions of KVbeta1.2 on the opening and closing of the KV1.2 delayed rectifier channel. Channels (Austin). 2009 Sep-Oct;3(5):314-22. Epub 2009 Sep 16. 19713757
  12. Chen P, Dendorfer A, Finol-Urdaneta RK, Terlau H, Olivera BM: Biochemical characterization of kappaM-RIIIJ, a Kv1.2 channel blocker: evaluation of cardioprotective effects of kappaM-conotoxins. J Biol Chem. 2010 May 14;285(20):14882-9. doi: 10.1074/jbc.M109.068486. Epub 2010 Mar 10. 20220134
  13. Zenker J, Poirot O, de Preux Charles AS, Arnaud E, Medard JJ, Lacroix C, Kuntzer T, Chrast R: Altered distribution of juxtaparanodal kv1.2 subunits mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus. J Neurosci. 2012 May 30;32(22):7493-8. doi: 10.1523/JNEUROSCI.0719-12.2012. 22649228
  14. Lee JH, Choi SH, Lee BH, Hwang SH, Kim HJ, Rhee J, Chung C, Nah SY: Activation of lysophosphatidic acid receptor by gintonin inhibits Kv1.2 channel activity: involvement of tyrosine kinase and receptor protein tyrosine phosphatase alpha. Neurosci Lett. 2013 Aug 26;548:143-8. doi: 10.1016/j.neulet.2013.05.048. Epub 2013 Jun 12. 23769686
  15. Pena SD, Coimbra RL: Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy. Clin Genet. 2015 Feb;87(2):e1-3. doi: 10.1111/cge.12542. 25477152
  16. Syrbe S, Hedrich UB, Riesch E, Djemie T, Muller S, Moller RS, Maher B, Hernandez-Hernandez L, Synofzik M, Caglayan HS, Arslan M, Serratosa JM, Nothnagel M, May P, Krause R, Loffler H, Detert K, Dorn T, Vogt H, Kramer G, Schols L, Mullis PE, Linnankivi T, Lehesjoki AE, Sterbova K, Craiu DC, Hoffman-Zacharska D, Korff CM, Weber YG, Steinlin M, Gallati S, Bertsche A, Bernhard MK, Merkenschlager A, Kiess W, Gonzalez M, Zuchner S, Palotie A, Suls A, De Jonghe P, Helbig I, Biskup S, Wolff M, Maljevic S, Schule R, Sisodiya SM, Weckhuysen S, Lerche H, Lemke JR: De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet. 2015 Apr;47(4):393-9. doi: 10.1038/ng.3239. Epub 2015 Mar 9. 25751627