NameMitogen-activated protein kinase 11
Synonyms
  • 2.7.11.24
  • MAP kinase 11
  • MAP kinase p38 beta
  • Mitogen-activated protein kinase p38 beta
  • p38-2
  • p38b
  • PRKM11
  • SAPK2
  • SAPK2B
  • Stress-activated protein kinase 2b
Gene NameMAPK11
OrganismHuman
Amino acid sequence
>lcl|BSEQ0006615|Mitogen-activated protein kinase 11
MSGPRAGFYRQELNKTVWEVPQRLQGLRPVGSGAYGSVCSAYDARLRQKVAVKKLSRPFQ
SLIHARRTYRELRLLKHLKHENVIGLLDVFTPATSIEDFSEVYLVTTLMGADLNNIVKCQ
ALSDEHVQFLVYQLLRGLKYIHSAGIIHRDLKPSNVAVNEDCELRILDFGLARQADEEMT
GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLQGKALFPGSDYIDQLKRIMEVVG
TPSPEVLAKISSEHARTYIQSLPPMPQKDLSSIFRGANPLAIDLLGRMLVLDSDQRVSAA
EALAHAYFSQYHDPEDEPEAEPYDESVEAKERTLEEWKELTYQEVLSFKPPEPPKPPGSL
EIEQ
Number of residues364
Molecular Weight41356.875
Theoretical pI5.64
GO Classification
Functions
  • protein serine/threonine kinase activity
  • MAP kinase activity
  • ATP binding
Processes
  • toll-like receptor TLR6
  • transcription, DNA-templated
  • TRIF-dependent toll-like receptor signaling pathway
  • activation of MAPK activity
  • response to stress
  • cellular response to virus
  • positive regulation of gene expression
  • gene expression
  • positive regulation of interleukin-12 secretion
  • regulation of mRNA stability
  • MyD88-dependent toll-like receptor signaling pathway
  • MyD88-independent toll-like receptor signaling pathway
  • innate immune response
  • regulation of sequence-specific DNA binding transcription factor activity
  • muscle cell differentiation
  • stress-activated MAPK cascade
  • positive regulation of muscle cell differentiation
  • toll-like receptor 10 signaling pathway
  • neurotrophin TRK receptor signaling pathway
  • toll-like receptor 2 signaling pathway
  • Ras protein signal transduction
  • toll-like receptor 3 signaling pathway
  • vascular endothelial growth factor receptor signaling pathway
  • toll-like receptor 4 signaling pathway
  • intracellular signal transduction
  • toll-like receptor 5 signaling pathway
  • toll-like receptor 9 signaling pathway
  • organelle organization
  • toll-like receptor signaling pathway
  • mitochondrion organization
  • signal transduction
  • toll-like receptor TLR1
  • negative regulation of cardiac muscle cell proliferation
Components
  • cytosol
  • nucleoplasm
General FunctionProtein serine/threonine kinase activity
Specific FunctionSerine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK11 functions are mostly redundant with those of MAPK14. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Additional examples of p38 MAPK substrates are the FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment.
Pfam Domain Function
Transmembrane RegionsNot Available
GenBank Protein IDNot Available
UniProtKB IDQ15759
UniProtKB Entry NameMK11_HUMAN
Cellular LocationCytoplasm
Gene sequence
>lcl|BSEQ0017085|Mitogen-activated protein kinase 11 (MAPK11)
ATGTCGGGCCCTCGCGCCGGCTTCTACCGGCAGGAGCTGAACAAGACCGTGTGGGAGGTG
CCGCAGCGGCTGCAGGGGCTGCGCCCGGTGGGCTCCGGCGCCTACGGCTCCGTCTGTTCG
GCCTACGACGCCCGGCTGCGCCAGAAGGTGGCGGTGAAGAAGCTGTCGCGCCCCTTCCAG
TCGCTGATCCACGCGCGCAGAACGTACCGGGAGCTGCGGCTGCTCAAGCACCTGAAGCAC
GAGAACGTCATCGGGCTTCTGGACGTCTTCACGCCGGCCACGTCCATCGAGGACTTCAGC
GAAGTGTACTTGGTGACCACCCTGATGGGCGCCGACCTGAACAACATCGTCAAGTGCCAG
GCGCTGAGCGACGAGCACGTTCAATTCCTGGTTTACCAGCTGCTGCGCGGGCTGAAGTAC
ATCCACTCGGCCGGGATCATCCACCGGGACCTGAAGCCCAGCAACGTGGCTGTGAACGAG
GACTGTGAGCTCAGGATCCTGGATTTCGGGCTGGCGCGCCAGGCGGACGAGGAGATGACC
GGCTATGTGGCCACGCGCTGGTACCGGGCACCTGAGATCATGCTCAACTGGATGCATTAC
AACCAAACAGTGGATATCTGGTCCGTGGGCTGCATCATGGCTGAGCTGCTCCAGGGCAAG
GCCCTCTTCCCGGGAAGCGACTACATTGACCAGCTGAAGCGCATCATGGAAGTGGTGGGC
ACACCCAGCCCTGAGGTTCTGGCAAAAATCTCCTCAGAACACGCCCGGACATATATCCAG
TCCCTGCCCCCCATGCCCCAGAAGGACCTGAGCAGCATCTTCCGTGGAGCCAACCCCCTG
GCCATAGACCTCCTTGGAAGGATGCTGGTGCTGGACAGTGACCAGAGGGTCAGTGCAGCT
GAGGCACTGGCCCACGCCTACTTCAGCCAGTACCACGACCCCGAGGATGAGCCAGAGGCC
GAGCCATATGATGAGAGCGTTGAGGCCAAGGAGCGCACGCTGGAGGAGTGGAAGGAGCTC
ACTTACCAGGAAGTCCTCAGCTTCAAGCCCCCAGAGCCACCGAAGCCACCTGGCAGCCTG
GAGATTGAGCAGTGA
GenBank Gene IDU53442
GeneCard IDNot Available
GenAtlas IDMAPK11
HGNC IDHGNC:6873
Chromosome Location22
Locus22q13.33
References
  1. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J: Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. 1996 Jul 26;271(30):17920-6. 8663524
  2. Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR: Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun. 1997 Jun 27;235(3):533-8. 9207191
  3. Enslen H, Raingeaud J, Davis RJ: Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem. 1998 Jan 16;273(3):1741-8. 9430721
  4. Goedert M, Cuenda A, Craxton M, Jakes R, Cohen P: Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 1997 Jun 16;16(12):3563-71. 9218798
  5. Stein B, Yang MX, Young DB, Janknecht R, Hunter T, Murray BW, Barbosa MS: p38-2, a novel mitogen-activated protein kinase with distinct properties. J Biol Chem. 1997 Aug 1;272(31):19509-17. 9235954
  6. Collins JE, Wright CL, Edwards CA, Davis MP, Grinham JA, Cole CG, Goward ME, Aguado B, Mallya M, Mokrab Y, Huckle EJ, Beare DM, Dunham I: A genome annotation-driven approach to cloning the human ORFeome. Genome Biol. 2004;5(10):R84. Epub 2004 Sep 30. 15461802
  7. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. 14702039
  8. Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O'Brien KP, et al.: The DNA sequence of human chromosome 22. Nature. 1999 Dec 2;402(6761):489-95. 10591208
  9. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. 15489334
  10. Deak M, Clifton AD, Lucocq LM, Alessi DR: Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998 Aug 3;17(15):4426-41. 9687510
  11. Yang SH, Galanis A, Sharrocks AD: Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol. 1999 Jun;19(6):4028-38. 10330143
  12. Tanoue T, Yamamoto T, Maeda R, Nishida E: A Novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs. J Biol Chem. 2001 Jul 13;276(28):26629-39. Epub 2001 May 18. 11359773
  13. Scheper GC, Morrice NA, Kleijn M, Proud CG: The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol Cell Biol. 2001 Feb;21(3):743-54. 11154262
  14. Mahlknecht U, Will J, Varin A, Hoelzer D, Herbein G: Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. J Immunol. 2004 Sep 15;173(6):3979-90. 15356147
  15. Shi Y, Gaestel M: In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem. 2002 Oct;383(10):1519-36. 12452429
  16. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15. 19369195
  17. Cuadrado A, Nebreda AR: Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010 Aug 1;429(3):403-17. doi: 10.1042/BJ20100323. 20626350
  18. Patel SB, Cameron PM, O'Keefe SJ, Frantz-Wattley B, Thompson J, O'Neill EA, Tennis T, Liu L, Becker JW, Scapin G: The three-dimensional structure of MAP kinase p38beta: different features of the ATP-binding site in p38beta compared with p38alpha. Acta Crystallogr D Biol Crystallogr. 2009 Aug;65(Pt 8):777-85. doi: 10.1107/S090744490901600X. Epub 2009 Jul 10. 19622861
  19. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8. 17344846